Prove Relationship between Equivalence Relations and Equivalence Classes

Ceci020
Messages
10
Reaction score
0
I'm not sure if I did these 2 questions correctly, so would someone please check my work for any missing ideas or errors?

Question 1:

Homework Statement


Prove:
For every x belongs to X, TR∩S(x) = TR(x) ∩ TS(x)

Homework Equations



The Attempt at a Solution


TR(x) = {x belongs to X such that <x,y> belongs to R}
TS(x) = {x belongs to X such that <x,y> belongs to S}
TR∩S(x) = {x belongs to X such that <x,y> belongs to R∩S}

<x,y> belongs to R∩S if <x,y> belongs to R and also belongs to S, which satisfy the definition above for TR(x) and TS(x)

Question 2:

Homework Statement


R and S are equivalence relations over X
Prove R ∩ S is also an equivalence relation over X

Homework Equations

The Attempt at a Solution


Since R and S are equivalence relations over X, then for x in X, R and S satisfy properties:
Reflexive:
<x,x> belongs to R
<x,x> belongs to S
Symmetry:
<x,y> and <y,x> belong to R
<x,y> and <y,x> belong to S
Transitivity:
<x,y> belongs to R, <y,z> belongs to R; then <x,z> belongs to R
<x,y> belongs to S, <y,z> belongs to R, then <x,z> belongs to S

If R∩S is equivalence relation, then it must satisfy:
1/ <x,x> belongs to R∩S, meaning <x,x> belongs to R and also belongs to S
2/ <x,y> and <y,x> belong to R∩S, meaning <x,y> belongs to R and also belongs to S.
3/ <x,y> belongs to R∩S and <y,z> belongs to R∩S, then <x,z> belongs to R∩S, meaning <x,z> belongs to R and also belongs to S
All of these are satisfied by hypotheses.
So R∩S is equivalence relation over X.
 
Physics news on Phys.org
First, be carful with your wording:
Reflexive:
<x,x> belongs to R
<x,x> belongs to S
should be "For all x in X, <x,x> belongs to R and <x,x> belongs to S"
And you really should say "therefore <x, x> belongs to R\cap S".

Symmetry:
<x,y> and <y,x> belong to R
<x,y> and <y,x> belong to S
would normally be interpreted as "for all x and y in X, <x, y> and <y, x> belong to R", etc. but that is not what you want to say. IF <x, y> is in R, then <y, x> if in R.

and the same for "transitive": IF <x, y> is in R AND <y, z> is in R, then <x, z> is in R.

And you cannot just say "all of these are satisfied by hypotheses". You must show exactly why each of reflexive, symmetric, and transitive is satisfied for R\cap S.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top