Prove Subset can't be coset with two different subgroups

  • Thread starter Thread starter FanofAFan
  • Start date Start date
FanofAFan
Messages
43
Reaction score
0
Prove that a subset S of a group G cannot be a right coset of two different subgroups of G.

I having a hard time proving this... but this is what I have so far;
Fix z in Hz and since z = ez where e is in H. Then assume z in Hy by the right coset equation then with x = z we see that Hz = Hy and if Hx intersection of Hy \neq to the empty set... that as far as i got. Please help
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top