- #1
Math100
- 771
- 219
- Homework Statement
- By considering ## u\cdot u\cdot N\cdot N ##, prove that ## \sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d})=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}) ##.
- Relevant Equations
- None.
Proof:
Let ## n\in\mathbb{N} ##.
Then ## \sigma_{\alpha}(n)=(u\cdot N^{\alpha})(n) ## for ## \alpha\neq 0 ## and ## \sigma_{0}(n)=(u\cdot u)(n) ##
such that ## u(n)=1, N(n)=n ## for all ## n ##.
By considering ## u\cdot u\cdot N\cdot N ##, we have that
\begin{align*}
&\sigma_{1}\cdot \sigma_{1}=(u\cdot N)\cdot (u\cdot N)\\
&=(N\cdot u)\cdot (u\cdot N)\\
&=N\cdot (u\cdot u)\cdot N\\
&=N\cdot \sigma_{0}\cdot N\\
&=\sigma_{0}\cdot (N\cdot N).\\
\end{align*}
Observe that
\begin{align*}
&(\sigma_{1}\cdot \sigma_{1})(n)=[\sigma_{0}\cdot (N\cdot N)](n)\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})(N\cdot N)(d)\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})\sum_{d_{1}\mid d}N(d_{1})N(\frac{d}{d_{1}})\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})\sum_{d_{1}\mid d}d_{1}(\frac{d}{d_{1}})\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})\sum_{d_{1}\mid d}d\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})d\sum_{d_{1}\mid d}1\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})d\sum_{d_{1}\mid d}u(d_{1})u(\frac{d}{d_{1}})\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})d[(u\cdot u)(d)]\\
&=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}).\\
\end{align*}
Since ## (\sigma_{1}\cdot \sigma_{1})(n)=\sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d}) ##,
it follows that ## \sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d})=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}) ##.
Therefore, ## \sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d})=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}) ##.
Let ## n\in\mathbb{N} ##.
Then ## \sigma_{\alpha}(n)=(u\cdot N^{\alpha})(n) ## for ## \alpha\neq 0 ## and ## \sigma_{0}(n)=(u\cdot u)(n) ##
such that ## u(n)=1, N(n)=n ## for all ## n ##.
By considering ## u\cdot u\cdot N\cdot N ##, we have that
\begin{align*}
&\sigma_{1}\cdot \sigma_{1}=(u\cdot N)\cdot (u\cdot N)\\
&=(N\cdot u)\cdot (u\cdot N)\\
&=N\cdot (u\cdot u)\cdot N\\
&=N\cdot \sigma_{0}\cdot N\\
&=\sigma_{0}\cdot (N\cdot N).\\
\end{align*}
Observe that
\begin{align*}
&(\sigma_{1}\cdot \sigma_{1})(n)=[\sigma_{0}\cdot (N\cdot N)](n)\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})(N\cdot N)(d)\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})\sum_{d_{1}\mid d}N(d_{1})N(\frac{d}{d_{1}})\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})\sum_{d_{1}\mid d}d_{1}(\frac{d}{d_{1}})\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})\sum_{d_{1}\mid d}d\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})d\sum_{d_{1}\mid d}1\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})d\sum_{d_{1}\mid d}u(d_{1})u(\frac{d}{d_{1}})\\
&=\sum_{d\mid n}\sigma_{0}(\frac{n}{d})d[(u\cdot u)(d)]\\
&=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}).\\
\end{align*}
Since ## (\sigma_{1}\cdot \sigma_{1})(n)=\sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d}) ##,
it follows that ## \sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d})=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}) ##.
Therefore, ## \sum_{d\mid n}\sigma_{1}(d)\sigma_{1}(\frac{n}{d})=\sum_{d\mid n}d\sigma_{0}(d)\sigma_{0}(\frac{n}{d}) ##.