MHB Prove that the radius of the incircle of △ is rational

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Radius Rational
AI Thread Summary
The discussion centers on proving that the radius of the incircle of an isosceles triangle with rational side lengths is rational if and only if the two right triangles formed by the altitude to the base are similar to a right triangle with integer side lengths. Participants emphasize the importance of the triangle's properties and the relationship between rational dimensions and the incircle's radius. The proof hinges on the similarity of the right triangles, linking rationality to integer side lengths. The conversation includes acknowledgment of contributions and solutions presented. The overall focus is on the geometric and algebraic implications of the triangle's dimensions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $\bigtriangleup$ be an isosceles triangle for which the length of a side and the length of the base are rational. Prove that the radius of the incircle of $\bigtriangleup $ is rational if and only if the two right triangles formed by the altitude to the base are similar to a right triangle with integer side lengths
 
Mathematics news on Phys.org
lfdahl said:
Let $\bigtriangleup$ be an isosceles triangle for which the length of a side and the length of the base are rational. Prove that the radius of the incircle of $\bigtriangleup $ is rational if and only if the two right triangles formed by the altitude to the base are similar to a right triangle with integer side lengths
my solution:
given isosceles triangle $ABC$
$h^2=x^2-\dfrac {y^2}{4}$
$h=\sqrt{\dfrac {4x^2-y^2}{4}}$
$h$ must be a perfect square
$r=\dfrac {yh}{2x+y}$
for $x,y,r$ being rational ,if x,y and h are all integers then we are done
else we can enlarge the original triangle to make them (x,y,h) all integers
so the two right triangles formed by the altitude to the base are similar to a right triangle (the bigger one) with integer side lengths
View attachment 7251
 

Attachments

  • rational radius.jpg
    rational radius.jpg
    13.1 KB · Views: 107
Last edited:
Albert said:
my solution:
given isosceles triangle $ABC$
$h^2=x^2-\dfrac {y^2}{4}$
$h=\sqrt{\dfrac {4x^2-y^2}{4}}$
$h$ must be a perfect square
$r=\dfrac {yh}{2x+y}$
for $x,y,r$ being rational ,if x,y and h are all integers then we are done
else we can enlarge the original triangle to make them (x,y,h) all integers
so the two right triangles formed by the altitude to the base are similar to a right triangle (the bigger one) with integer side lengths
Well done, Albert!Thankyou for your participation.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top