Prove the following commutation relations

Click For Summary
The discussion focuses on proving the commutation relations involving the Pauli-Lubanski vector and its role in defining the generators of the little group for massive representations, specifically SO(3). The calculation begins with the expression for the commutation relation and utilizes the properties of the Pauli-Lubanski vector in the rest frame of the particle. Participants emphasize the importance of working within the fixed three-momentum subspace to simplify the proof. A hint is provided that the little group corresponds to representations of SU(2) in quantum theory. The conversation concludes with a note on the complexity of the professor's solution.
Hibarikyoya
Messages
2
Reaction score
0
Homework Statement
I have to prove that:

$$[J^k, J^i] = i \epsilon^{kij} J^j$$

.
Relevant Equations
where $$J^k = \frac{1}{M} (L^{-1})^k_{\mu} W^{\mu},$$ in which M is a real number (with the meaning of a mass), $L(\vec{P},M)$ is a Lorentz transformation (in particular a boost in the direction identified by the momentum $\vec{P}$). I can also provide the explicit form of this transformation, but I think is not needed for this exercise. $W^{\mu}$ is the Pauli-Lubanski four vector. Moreover k, i and j run from 1 to 3 and they are spatial indices, while the greek indices run from 0 to 3
I tried in this way:
$$[J^k, J^i] = \frac{1}{M^2}\ (L^{-1})^k_{\mu}\ (L^{-1})^i_{\nu}\ [W^{\mu}, W^{\nu}] $$
$$ = \frac{1}{M^2}\ (L^{-1})^k_{\mu}\ (L^{-1})^i_{\nu}\ (-i) \epsilon^{\mu \nu \rho \sigma} W_{\rho} P_{\sigma}.$$
At this point I had no idea how to going on with the calculation. Can anyone help me?
 
Physics news on Phys.org
Dealing with
\mathbf{J}=\mathbf{r}\times\mathbf{p}
is a primitive way. Do you like to solve the problem in an advanced way ?
 
Hint: What you are supposed to prove is that the Pauli-Lubanski vector provides the generators (Lie-algebra basis elements) of the little group for the massive representations, where indeed the little group is the SO(3) (represented by representations of the SU(2), i.e., its covering group in QT).

Obviously the idea is to consider the Pauli-Lubanski-vector operators on the subspace of fixed three-momentum ##\vec{P}##. The boost transforms to the rest frame of the particle, where ##P^{\mu}/M=(1,0,0,0)##, and where ##W^{\mu}=(0,\vec{W})##.

In other words: For your prove you can simply work in the restframe of the particle and the three spatial components of ##\vec{W}## wrt. this frame.
 
  • Love
Likes malawi_glenn
vanhees71 said:
Hint: What you are supposed to prove is that the Pauli-Lubanski vector provides the generators (Lie-algebra basis elements) of the little group for the massive representations, where indeed the little group is the SO(3) (represented by representations of the SU(2), i.e., its covering group in QT).

Obviously the idea is to consider the Pauli-Lubanski-vector operators on the subspace of fixed three-momentum ##\vec{P}##. The boost transforms to the rest frame of the particle, where ##P^{\mu}/M=(1,0,0,0)##, and where ##W^{\mu}=(0,\vec{W})##.

In other words: For your prove you can simply work in the restframe of the particle and the three spatial components of ##\vec{W}## wrt. this frame.
Very nice idea. The professor showed us his solution and it was a mess
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
7K