Prove the following commutation relations

AI Thread Summary
The discussion focuses on proving the commutation relations involving the Pauli-Lubanski vector and its role in defining the generators of the little group for massive representations, specifically SO(3). The calculation begins with the expression for the commutation relation and utilizes the properties of the Pauli-Lubanski vector in the rest frame of the particle. Participants emphasize the importance of working within the fixed three-momentum subspace to simplify the proof. A hint is provided that the little group corresponds to representations of SU(2) in quantum theory. The conversation concludes with a note on the complexity of the professor's solution.
Hibarikyoya
Messages
2
Reaction score
0
Homework Statement
I have to prove that:

$$[J^k, J^i] = i \epsilon^{kij} J^j$$

.
Relevant Equations
where $$J^k = \frac{1}{M} (L^{-1})^k_{\mu} W^{\mu},$$ in which M is a real number (with the meaning of a mass), $L(\vec{P},M)$ is a Lorentz transformation (in particular a boost in the direction identified by the momentum $\vec{P}$). I can also provide the explicit form of this transformation, but I think is not needed for this exercise. $W^{\mu}$ is the Pauli-Lubanski four vector. Moreover k, i and j run from 1 to 3 and they are spatial indices, while the greek indices run from 0 to 3
I tried in this way:
$$[J^k, J^i] = \frac{1}{M^2}\ (L^{-1})^k_{\mu}\ (L^{-1})^i_{\nu}\ [W^{\mu}, W^{\nu}] $$
$$ = \frac{1}{M^2}\ (L^{-1})^k_{\mu}\ (L^{-1})^i_{\nu}\ (-i) \epsilon^{\mu \nu \rho \sigma} W_{\rho} P_{\sigma}.$$
At this point I had no idea how to going on with the calculation. Can anyone help me?
 
Physics news on Phys.org
Dealing with
\mathbf{J}=\mathbf{r}\times\mathbf{p}
is a primitive way. Do you like to solve the problem in an advanced way ?
 
Hint: What you are supposed to prove is that the Pauli-Lubanski vector provides the generators (Lie-algebra basis elements) of the little group for the massive representations, where indeed the little group is the SO(3) (represented by representations of the SU(2), i.e., its covering group in QT).

Obviously the idea is to consider the Pauli-Lubanski-vector operators on the subspace of fixed three-momentum ##\vec{P}##. The boost transforms to the rest frame of the particle, where ##P^{\mu}/M=(1,0,0,0)##, and where ##W^{\mu}=(0,\vec{W})##.

In other words: For your prove you can simply work in the restframe of the particle and the three spatial components of ##\vec{W}## wrt. this frame.
 
  • Love
Likes malawi_glenn
vanhees71 said:
Hint: What you are supposed to prove is that the Pauli-Lubanski vector provides the generators (Lie-algebra basis elements) of the little group for the massive representations, where indeed the little group is the SO(3) (represented by representations of the SU(2), i.e., its covering group in QT).

Obviously the idea is to consider the Pauli-Lubanski-vector operators on the subspace of fixed three-momentum ##\vec{P}##. The boost transforms to the rest frame of the particle, where ##P^{\mu}/M=(1,0,0,0)##, and where ##W^{\mu}=(0,\vec{W})##.

In other words: For your prove you can simply work in the restframe of the particle and the three spatial components of ##\vec{W}## wrt. this frame.
Very nice idea. The professor showed us his solution and it was a mess
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top