alexfresno
- 4
- 0
[SOLVED] prove the formula of squareroot 2
Verify the following formula:
Squareroot (2)=7/5*(1+ 1/100 + 1*3/(100*200) + 1*3*5/(100*200*300) + etc..)
Use the Fact that 50=5^2*2=7^2+1
Theorem: (1+x)^a=1 +a*x/1 + (a(a-1)*x^2)/(1*2)+ (a(a-1)(a-2)*x^3)/(1*2*3)+ etc...
Hint: use the theorem with (1-x)^(-1/2)
I used the series expansion for (1-x)^(-1/2) and got
(1-x)^(-1/2)=1+ (1*x)/(1*2)+(1*3*X^2)/(1*2*4)+ (1*3*5*x^3)/(1*2*4*6)+etc ...
I do understand that the squareroot (50)=5*squareroot(2) But I am stuck
Please help, thanks
Verify the following formula:
Squareroot (2)=7/5*(1+ 1/100 + 1*3/(100*200) + 1*3*5/(100*200*300) + etc..)
Use the Fact that 50=5^2*2=7^2+1
Theorem: (1+x)^a=1 +a*x/1 + (a(a-1)*x^2)/(1*2)+ (a(a-1)(a-2)*x^3)/(1*2*3)+ etc...
Hint: use the theorem with (1-x)^(-1/2)
I used the series expansion for (1-x)^(-1/2) and got
(1-x)^(-1/2)=1+ (1*x)/(1*2)+(1*3*X^2)/(1*2*4)+ (1*3*5*x^3)/(1*2*4*6)+etc ...
I do understand that the squareroot (50)=5*squareroot(2) But I am stuck
Please help, thanks
Last edited: