Prove the product of orientable manifolds is again orientable

  • Thread starter Thread starter hatsoff
  • Start date Start date
  • Tags Tags
    Manifolds Product
hatsoff
Messages
16
Reaction score
3

Homework Statement



Let M and N be orientable m- and n-manifolds, respectively. Prove that their product is an orientable (m+n)-manifold.

Homework Equations



An m-manifold M is orientable iff it has a nowhere vanishing m-form.

The Attempt at a Solution



I assume I would take nowhere vanishing m- and n-forms f and g on M and N, respectively, and use them to construct an (m+n)-form h on MxN. However I don't know how this construction would proceed. Any help would be much appreciated.
 
Last edited:
Physics news on Phys.org
I'm assuming that the word orientable in the problem statement is just missing. Given an m-form and an n-form there's only one real way to ever construct an m+n form. It might help to remember/prove that the cotangent bundle of MxN is TM*xTN*
 
Office_Shredder said:
I'm assuming that the word orientable in the problem statement is just missing. Given an m-form and an n-form there's only one real way to ever construct an m+n form. It might help to remember/prove that the cotangent bundle of MxN is TM*xTN*

Thanks for the response. My first thought is to let

\varphi(m,n)(x_1,\cdots,x_{m+n})=f(m,n)(x_1,\cdots,x_m)+g(m,n)(x_{m+1},\cdots,x_{m+n})

so that each φ(m,n) is (m+n)-multilinear, and then apply the alternation mapping A to get the antisymmetric multilinear map h(m,n)=A(φ(m,n)), that is,

(h)(m,n)(x_1,\cdots,x_{m+n})=\frac{1}{(m+n)!}\sum_{ \sigma\in S_{m+n}}(\text{sgn }\sigma)\varphi(m,n)(x_{ \sigma(1)},\cdots,x_{ \sigma (m+n)})

But there is so much about that map which I wouldn't know how to prove. For instance, is h a diffeomorphism with its image? I know that it maps into the set of (m+n)-multilinear maps from R^{(m+n)(m+n)} into R, but is it really surjective like I need? And is it nowhere vanishing? If I knew in advance that the answers to these questions were all "yes," then I wouldn't mind spending a lot of time trying to prove it. But I don't know any of that, and it's very frustrating.

As to the cotangent bundle, I'm not sure how that would help. In fact I had to look it up on wikipedia, since I've never encountered it before.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top