JBD2
- 61
- 0
Homework Statement
Verify the possibility of an identity graphically. (Completed this part)
Then, prove each identity algebraically.
\dfrac{sinx+tanx}{cosx+1}=tanx
Homework Equations
tan\theta=\dfrac{sin\theta}{cos\theta}
cot\theta=\dfrac{cos\theta}{sin\theta}
sin^{2}\theta+cos^{2}\theta=1
tan^{2}\theta+1=sec^{2}\theta
cot^{2}\theta+1=csc^{2}\theta
The Attempt at a Solution
\dfrac{sinx+\dfrac{sinx}{cosx}}{cosx+1}
\dfrac{sinx+sinxcosx}{cosx+1}
(sinx+sinxcosx)(cosx+1)
sinxcosx+sinx+sinxcos^{2}x+sinxcosx
\dfrac{sinxcos^{2}x}{sinx}+\dfrac{2sinxcosx}{sinx}+\dfrac{sinx}{sinx}
cos^{2}x+2cosx+1
1-sin^{2}x+2cosx+1
2cosx-sin^{2}x+2
That's as far as I got and now I have no idea what to do.