ballzac
- 100
- 0
Homework Statement
Prove \mathbf{PQ}\cdot \mathbf v=\int_a^b\frac{\textup d\gamma}{\textup d t}(t)\cdot\mathbf v\textup d t
where \mathbf P=\gamma(a) and \mathbf Q=\gamma(b)
The Attempt at a Solution
I get
<br /> \int_a^b\frac{\textup d\gamma}{\textup d t}(t)\cdot\mathbf v\textup d t=v_x\int_a^b{\frac{\textup d\gamma_x}{\textup d t}\textup d t}+v_y\int_a^b{\frac{\textup d\gamma_y}{\textup d t}\textup d t}+v_z\int_a^b{\frac{\textup d\gamma_z}{\textup d t}\textup d t}\\<br /> =v_x(\gamma_x(b)-\gamma_x(a))+v_y(\gamma_y(b)-\gamma_y(a))+v_y(\gamma_y(b)-\gamma_y(a))\\<br /> =\mathbf v\cdot(\mathbf{Q-P})
I'm not sure how to turn this into what is given. I'm not even sure I know what the left hand side of the given identity means. Is it the same thing as
\mathbf{P}(\mathbf Q}\cdot \mathbf v)
Any help would be appreciated. Thanks in advance :)