MHB Prove y is less than or equal to z

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z,\,a,\,b$ be positive real such that $xa+yb\le ya+zb\le za+xb$.

Prove that $y\le z$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z,\,a,\,b$ be positive real such that $xa+yb\le ya+zb\le za+xb$.

Prove that $y\le z$.
if $y>z------(1)$
we have:$ay+bz\leq az+bx<ay+bx$
$\therefore bz<bx,\, or \,,x>z----(2)$
$az+bx\geq ax+by>az+by$
$\therefore bx>by ,\,\, or \,\, x>y---(3)$
from (1)(2)(3)we get :$x>y>z$
this contradicts to $ax+by\leq ay+bz$
so we obtain $y\leq z$
it is easy to see $y=z=x$ is possible
 
Thanks for participating, Albert!

Solution of other:

The first inequality tells us:

$$\color{yellow}\bbox[5px,purple]{xa+yb\le ya+zb}\color{black}\le za+xb$$

$$(y-z)b\le a(y-x)$$

Whereas the second inequality is equivalent to

$$\color{black}xa+yb\le\color{yellow}\bbox[5px,green]{ ya+zb\le za+xb}$$

$$(y-z)a\le b(x-z)$$

If $y>z$, then the left sides of the two inequalities above are positive, so the right sides are positive as well.

In particular, this means $y-x>0$ and $x-z>0$, this further implies $y>x>z$, giving

$xa>za$ and $yb>xb$

Adding them up gives $xa+yb>za+xb$, which contradicts the relation between the first and third expressions in the given original inequality.

Thus, $y\le z$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top