MHB Proving $1 \leq a \leq 9$ for Quadratic Equations

Click For Summary
The discussion focuses on proving the inequality $1 \leq a \leq 9$ using the quadratic equations $a^2 - bc - 8a + 7 = 0$ and $b^2 + c^2 + bc - 6a + 6 = 0$. Participants highlight the effectiveness of working backwards as a method to derive the solution. The conversation emphasizes the importance of manipulating the equations to establish the bounds for 'a'. Overall, the approach discussed provides a solid foundation for proving the specified range for 'a'. The methods shared contribute to a deeper understanding of the problem.
Albert1
Messages
1,221
Reaction score
0
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$
 
Mathematics news on Phys.org
My solution:

I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o

Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get:

$a^2-10a+9+2a-2-bc=0$

$a^2-10a+9=bc-2(a-1)$(*)

Rewrite the second equation such that it becomes

$b^2+c^2+bc-6a+6=0$

$6(a-1)=(b-c)^2+3bc$

$2(a-1)=\dfrac{(b-c)^2}{3}+bc$

Substitute the above into (*) yields

$a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$

$\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
 
Last edited:
anemone said:
My solution:
I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get: $a^2-10a+9+2a-2-bc=0$ $a^2-10a+9=bc-2(a-1)$(*) Rewrite the second equation such that it becomes $b^2+c^2+bc-6a+6=0$ $6(a-1)=(b-c)^2+3bc$ $2(a-1)=\dfrac{(b-c)^2}{3}+bc$ Substitute the above into (*) yields $a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$ $\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
very good ! working backwards is also a nice method,it gives us a hint to work forwards.
 
Albert said:
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$

we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
 
Last edited:
kaliprasad said:
we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
very nice !
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K