MHB Proving $1 \leq a \leq 9$ for Quadratic Equations

Albert1
Messages
1,221
Reaction score
0
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$
 
Mathematics news on Phys.org
My solution:

I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o

Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get:

$a^2-10a+9+2a-2-bc=0$

$a^2-10a+9=bc-2(a-1)$(*)

Rewrite the second equation such that it becomes

$b^2+c^2+bc-6a+6=0$

$6(a-1)=(b-c)^2+3bc$

$2(a-1)=\dfrac{(b-c)^2}{3}+bc$

Substitute the above into (*) yields

$a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$

$\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
 
Last edited:
anemone said:
My solution:
I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get: $a^2-10a+9+2a-2-bc=0$ $a^2-10a+9=bc-2(a-1)$(*) Rewrite the second equation such that it becomes $b^2+c^2+bc-6a+6=0$ $6(a-1)=(b-c)^2+3bc$ $2(a-1)=\dfrac{(b-c)^2}{3}+bc$ Substitute the above into (*) yields $a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$ $\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
very good ! working backwards is also a nice method,it gives us a hint to work forwards.
 
Albert said:
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$

we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
 
Last edited:
kaliprasad said:
we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
very nice !
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top