Proving $1 \leq a \leq 9$ for Quadratic Equations

Click For Summary

Discussion Overview

The discussion revolves around proving the inequality \(1 \leq a \leq 9\) in the context of two quadratic equations involving the variables \(a\), \(b\), and \(c\). The scope includes mathematical reasoning and potential solutions to the problem posed.

Discussion Character

  • Mathematical reasoning, Homework-related, Exploratory

Main Points Raised

  • One participant presents the equations \(a^2-bc-8a+7=0\) and \(b^2+c^2+bc-6a+6=0\) and asks to prove the inequality \(1 \leq a \leq 9\).
  • Another participant offers a solution and suggests that working backwards is a useful method, implying it may provide insights for a forward approach.
  • There is a reiteration of the original equations by a different participant, indicating a focus on the same problem.
  • Expressions of approval for the proposed solutions and methods are noted, but no specific solutions or proofs are detailed.

Areas of Agreement / Disagreement

Participants express appreciation for the methods discussed, but there is no clear consensus on a definitive solution or proof for the inequality.

Contextual Notes

The discussion does not clarify any assumptions or dependencies related to the variables \(b\) and \(c\), nor does it resolve any mathematical steps necessary for the proof.

Albert1
Messages
1,221
Reaction score
0
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$
 
Mathematics news on Phys.org
My solution:

I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o

Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get:

$a^2-10a+9+2a-2-bc=0$

$a^2-10a+9=bc-2(a-1)$(*)

Rewrite the second equation such that it becomes

$b^2+c^2+bc-6a+6=0$

$6(a-1)=(b-c)^2+3bc$

$2(a-1)=\dfrac{(b-c)^2}{3}+bc$

Substitute the above into (*) yields

$a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$

$\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
 
Last edited:
anemone said:
My solution:
I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get: $a^2-10a+9+2a-2-bc=0$ $a^2-10a+9=bc-2(a-1)$(*) Rewrite the second equation such that it becomes $b^2+c^2+bc-6a+6=0$ $6(a-1)=(b-c)^2+3bc$ $2(a-1)=\dfrac{(b-c)^2}{3}+bc$ Substitute the above into (*) yields $a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$ $\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
very good ! working backwards is also a nice method,it gives us a hint to work forwards.
 
Albert said:
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$

we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
 
Last edited:
kaliprasad said:
we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
very nice !
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K