MHB Proving $2- \epsilon < y$ for Limit w/ Epsilon

  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Epsilon Limit
AI Thread Summary
The discussion focuses on proving the inequality $2 - \epsilon < y < 2 + \epsilon$ for the function $y = 2 + \frac{1}{x^2}$, given that $x > \frac{1}{(\epsilon)^{1/2}}$. The first part of the proof establishes that if $x$ meets this condition, then $y < 2 + \epsilon$ holds true. Participants seek guidance on proving the lower bound, $2 - \epsilon < y$. It is noted that for any $x$, $y$ is always greater than 2, thus satisfying the condition $y > 2 > 2 - \epsilon$. The conversation emphasizes the need for a rigorous approach to complete the proof.
Dethrone
Messages
716
Reaction score
0
Suppose we are given the function $y=2+\frac{1}{x^2}$. Prove that given $x>\frac{1}{(\epsilon)^{1/2}}$, where $\epsilon > 0$, then $2- \epsilon < y < 2 + \epsilon$.
So the first part is easy:
$$x>\frac{1}{(\epsilon)^{1/2}}$$
$$x^2>\frac{1}{\epsilon}$$
$$\frac{1}{x^2}<\epsilon$$
$$2+\frac{1}{x^2}<2+\epsilon$$

Now, any hints as to how to prove $2-\epsilon < y$? (Wondering)
 
Mathematics news on Phys.org
Rido12 said:
Suppose we are given the function $y=2+\frac{1}{x^2}$. Prove that given $x>\frac{1}{(\epsilon)^{1/2}}$, where $\epsilon > 0$, then $2- \epsilon < y < 2 + \epsilon$.
So the first part is easy:
$$x>\frac{1}{(\epsilon)^{1/2}}$$
$$x^2>\frac{1}{\epsilon}$$
$$\frac{1}{x^2}<\epsilon$$
$$2+\frac{1}{x^2}<2+\epsilon$$

Now, any hints as to how to prove $2-\epsilon < y$? (Wondering)

For any value of x and for any value of $\varepsilon > 0$ is ...

$\displaystyle y > 2 > 2 - \varepsilon\ (1)$

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top