Proving $(a+b,\ a^2-ab+b^2)=1$ or $3$

  • Context: MHB 
  • Thread starter Thread starter alexmahone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving that if \( (a, b) = 1 \), then \( (a+b, a^2-ab+b^2) = 1 \) or \( 3 \). The proof involves manipulating the expression \( (a+b, a^2-ab+b^2) \) to show that it can be reduced to \( (a+b, 3ab) \). Two cases are considered: when \( (a+b, 3) = 1 \) and when \( (a+b, 3) = 3 \), leading to the conclusion that \( (a+b, ab) = 1 \) in both scenarios. The final argument confirms that any common divisor \( d \) of \( a+b \) and \( a^2-ab+b^2 \) must also divide \( 3 \), establishing the result definitively.

PREREQUISITES
  • Understanding of number theory concepts such as greatest common divisor (GCD).
  • Familiarity with modular arithmetic.
  • Basic algebraic manipulation of polynomials.
  • Knowledge of properties of coprime integers.
NEXT STEPS
  • Study the properties of GCD in number theory.
  • Learn about modular arithmetic and its applications in proofs.
  • Explore advanced techniques in algebraic manipulation.
  • Investigate further implications of coprimality in number theory.
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in algebraic proofs involving coprime integers.

alexmahone
Messages
303
Reaction score
0
Show that if $(a, b)=1$ then $(a+b,\ a^2-ab+b^2)=1\text{ or }3$.

My attempt:

$(a+b,\ a^2-ab+b^2)=(a+b,\ a^2-ab+b^2-(a+b)(a+b))=(a+b,\ -3ab)=(a+b,\ 3ab)$

$(a,\ a+b)=(b,\ a+b)=1$

$\therefore (a+b,\ ab)=1$

Consider 2 cases:

1) $(a+b,\ 3)=1 \implies(a+b,\ 3ab)=1$

2) $(a+b,\ 3)=3\implies 3|a+b$

$\displaystyle (a+b,\ ab)=1\implies\left(\frac{a+b}{3},\ ab\right)=1$

$\displaystyle (a+b,\ 3ab)=3\left(\frac{a+b}{3},\ ab\right)=3$

Is that ok?
 
Last edited:
Mathematics news on Phys.org
Alexmahone said:
Show that if $(a, b)=1$ then $(a+b,\ a^2-ab+b^2)=1\text{ or }3$.

My attempt:

$(a+b,\ a^2-ab+b^2)=(a+b,\ a^2-ab+b^2-(a+b)(a+b))=(a+b,\ -3ab)=(a+b,\ 3ab)$

$(a,\ a+b)=(b,\ a+b)=1$

$\therefore (a+b,\ ab)=1$

Consider 2 cases:

1) $(a+b,\ 3)=1 \implies(a+b,\ 3ab)=1$

2) $(a+b,\ 3)=3\implies 3|a+b$

$\displaystyle (a+b,\ ab)=1\implies\left(\frac{a+b}{3},\ ab\right)=1$

$\displaystyle (a+b,\ 3ab)=3\left(\frac{a+b}{3},\ ab\right)=3$

Is that ok?
Yes. Perfect.
 
You might be interested in the following approach:

Let $d$ be a common divisor of $a+b$ and $a^2-ab+b^2$. Then $ d|(a+b)$ and this can be rewritten as $ a \equiv - b (\bmod. d)$

And so $0\equiv a^2-ab+b^2 \equiv (-b)^2 - (-b) \cdot b + b^2 = 3 b^2 (\bmod. d)$ . But we must have $(d,b) = 1$ since $(a,b)=1$ and $d | (a+b)$ (because any common divisor of $b$ and $d$ will also divide $a$).

Thus $0 \equiv 3 (\bmod. d)$ ...
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
4
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
979
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K