Proving a limit using epsilon/delta

  • Thread starter Thread starter ImAnEngineer
  • Start date Start date
  • Tags Tags
    Limit
ImAnEngineer
Messages
209
Reaction score
1

Homework Statement


Prove that \mathop {\lim }\limits_{(x,y,z) \to (0,0,0) } \frac{xyz}{{x^2+y^2+z^2 }} = 0
using the epsilon-delta method

The Attempt at a Solution


0<|(x,y,z)-(0,0,0)|=\sqrt{x^2+y^2+z^2}<\delta
Now I have to rewrite:
0<\left|\frac{xyz}{{x^2+y^2+z^2 }}-0\right|<\epsilon
So that I find a relationship between epsilon and delta.

This is where I get stuck... I can't figure out how to do that.

This is one of my attempts:
0<\left|\frac{xyz}{{x^2+y^2+z^2 }}-0\right|\leq \left|\frac{xyz}{{x^2}}\right|=\left|\frac{yz}{{x}}\right|

Any help is very much appreciated!
 
Last edited:
Physics news on Phys.org
Hint: yz<=1/2*(y^2+z^2)
 
Then it is easy:

0&lt;\left|\frac{xyz}{x^2+y^2+z^2}-0\right|\leq\left|\frac{xyz}{y^2+z^2}\right|\leq\left|\frac{xyz}{2yz}\right|=\left|\frac{x}{2}\right|&lt;\frac{\delta}{2}=\epsilon

How did you come up with: yz<=1/2*(y^2+z^2) ?
(Why is it true at all?)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top