"Pb and not (P1, P2, P3 ...)" would be a formula of infinite length, and I don't know of any language that allows formulas of infinite length. However, you can have an infinite set of formulas of finite length- which I suppose would work just as well.
For your proof, the setup isn't fun, but here goes.
The primitive symbols of formal language L fall into two disjoint sets: a countably infinite set of propositional symbols and a set of two distinct connective symbols, "NOT" denoted by ~ and "AND" denoted by &.
Formulas are defined as follows:
1) a propositional symbol is a formula.
2) If P is a formula, then ~P is a formula.
3) If P and Q are formulas, then &PQ is a formula.
A (truth-)valuation V on L is a mapping from the set of formulas to the set {T, F} of (truth-)values, defined as follows:
1) If P is a propositional symbol, Pv denotes the value assigned to P by V (Pv = T or Pv = F).
2) If P is a formula, (~P)v = {T if Pv = F, F if Pv = T}.
3) If P and Q are formulas, (&PQ)v = {T if Pv = T and Qv = T, F otherwise}.
You want to prove that & has the associative and commutative properties. Informally, this is simple. Say that two formulas P and Q are equivalent iff Pv = Qv for every V. So you want to prove that if R, S, and T are formulas, then (&R&ST)v = (&&RST)v and (&RS)v = (&SR)v for every V. This follows immediately from the definitions.
You also want to prove that (&PP)v = Pv (so you can get rid of all those extra Pbs). If Pv = T, then (&PP)v = T, and vice versa. If Pv = F, then (&PP)v = F, and vice versa. So they're equivalent.
We can write "&PQ" as "P & Q" and introduce parentheses and subscripts for convenience. I think the meaning of your original statement is clear, if stated as follows:
For any n in N, [(P1 & ~P2) & (P1 & ~P3) & ... & (P1 & ~Pn)] is equivalent to [P1 & (~P2 & ~P3 & ... & ~Pn)].
Note that you cannot write ~(P2, P3, ..., Pn), unless you say what the commas mean. Note also that ~(P2 & P3 & ... & Pn) is not equivalent to (~P2 & ~P3 & ... & ~Pn)- "~" doesn't distribute that way.
If that didn't help, just say so. Is that what you wanted to say?