Proving a spanning set is the rangespace

  • Thread starter Thread starter Jennifer1990
  • Start date Start date
  • Tags Tags
    Set
Jennifer1990
Messages
55
Reaction score
0

Homework Statement


Suppose that the span {v1,...,vn} = V and let L:V-->W be an onto linear mapping. Prove that span {L(v1),...,L(v2)} = W


Homework Equations


None


The Attempt at a Solution


I think for this question, we just have to show that if vi, where i is a real number, is a given vector in V, then L(vi) is a vector in W. Can someone help guide me on how to start the proof?
 
Physics news on Phys.org
Since v_i is in V, of course L(v_i) is a vector in W since by definition, L take an element of V (that is to say, a vector in V) and bring it to an element of W (that is to say, a vector in W).

According to the definition of a subset spanning a vector space, what we need to do here is to show that given any w in W, we can find real numbers a_i such that a_1L(v_1)+...+a_nL(v_n)=w.

You have a lot of things to help you achieve this:
1) The fact that L is linear,
2) The fact that L is surjective,
3) The fact that {v_i,...,v_n} spans V.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top