MHB Proving a trigonometric identity

AI Thread Summary
The discussion focuses on proving the trigonometric identity involving the sum of cosines at specific angles. Participants suggest using angle addition formulas to express each cosine term in terms of known angles, specifically $\frac{\pi}{5}$ and $\frac{\pi}{7}$. There is a correction regarding the cosine of $\frac{18\pi}{35}$, emphasizing the importance of handling negative signs accurately. The next steps involve expanding the expressions, adding them, and factoring to equate coefficients. The conversation highlights the collaborative effort to clarify the proof process for the given identity.
maxkor
Messages
79
Reaction score
0
How prove $\cos\frac{8\pi}{35}+\cos\frac{12\pi}{35}+\cos\frac{18\pi}{35}=\frac{1}{2}\cdot\left(\cos\frac{\pi}{5}+\sqrt7\cdot\sin\frac{\pi}{5}\right)$?
 
Mathematics news on Phys.org
I have retitled the thread, since a title of "trig" in our Trigonometry forum tells our readers no more that they would already surmise. A good thread title briefly describes the question being asked.

Can you post what you have tried so far so our helpers know where you are stuck, and won't offer suggestions that you may have already tried?
 
$\cos \frac{12\pi}{35}=\cos( \frac{\pi}{5}+ \frac{\pi}{7})=\cos \frac{\pi}{5} \cdot \cos \frac{\pi}{7}-\sin \frac{\pi}{5} \cdot \sin \frac{\pi}{7}$$\cos \frac{8\pi}{35}=\cos( -\frac{\pi}{5}+ \frac{3\pi}{7})=\cos \frac{\pi}{5} \cdot \cos \frac{3\pi}{7}+\sin \frac{\pi}{5} \cdot \sin \frac{3\pi}{7}$$\cos \frac{18\pi}{35}=-\cos( \frac{\pi}{5}+ \frac{2\pi}{7})=-\cos \frac{\pi}{5} \cdot \cos \frac{2\pi}{7}+\sin \frac{\pi}{5} \cdot \sin \frac{2\pi}{7}$

what next?
 
I believe you want instead:

$$\cos\left(\frac{18\pi}{35}\right)=\cos\left(-\frac{\pi}{5}+\frac{5\pi}{7}\right)$$

Once you expand that like your first two equations, then add and factor on the two trig. expressions on the right side of the identity you are given to prove. Then you will have two identities resulting from equating the coefficients you must prove.
 
I see now I missed the negative sign, and indeed:

$$\cos\left(\frac{18\pi}{35}\right)=-\cos\left(\frac{17\pi}{35}\right)$$

So, add what you have, and factor as I suggested above. :D
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top