MHB Proving an inequality with square roots

AI Thread Summary
The discussion revolves around proving two inequalities involving square roots and their application to a summation. The first inequality, \(2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1})\) for \(n \geq 1\), has been successfully established. The user then attempts to derive the sum inequality \(2\sqrt{m}-2<\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}-1\) for \(m \geq 2\) but struggles with the right side. A suggestion is made to replace the incorrect inequality \(\frac{1}{\sqrt{1}}<2(\sqrt{1}-\sqrt{0})\) with \(\frac{1}{\sqrt{1}}\leq 1\), which would help in completing the proof. The conversation highlights the importance of careful inequality management in mathematical proofs.
Ragnarok7
Messages
50
Reaction score
0
This is problem 13 from section I 4.7 of Apostol's Calculus Volume 1:

Prove that $$2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1})$$ if $$n\geq 1$$. Then use this to prove that $$2\sqrt{m}-2<\displaystyle\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}-1$$ if $$m\geq 2$$.

I have proved the first inequality, and using that I took $$n=1,2,\ldots,m$$ to get the following inequalities:

$$2(\sqrt{2}-\sqrt{1})<\frac{1}{\sqrt{1}}<2(\sqrt{1}-\sqrt{0})$$
$$2(\sqrt{3}-\sqrt{2})<\frac{1}{\sqrt{2}}<2(\sqrt{2}-\sqrt{1})$$
$$2(\sqrt{4}-\sqrt{3})<\frac{1}{\sqrt{3}}<2(\sqrt{3}-\sqrt{2})$$
$$\vdots$$
$$2(\sqrt{m+1}-\sqrt{m})<\frac{1}{\sqrt{m}}<2(\sqrt{m}-\sqrt{m-1})$$

Adding them, I get

$$2(\sqrt{m+1}-\sqrt{1})<\displaystyle\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}$$

and, since $$\sqrt{m+1}>\sqrt{m}$$, this implies

$$2\sqrt{m}-2<\displaystyle\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}$$

so that the left inequality is the desired one. However, I'm unsure how to get the right side. Does anyone have any hints? Thank you!
 
Mathematics news on Phys.org
Ragnarok said:
This is problem 13 from section I 4.7 of Apostol's Calculus Volume 1:

Prove that $$2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1})$$ if $$n\geq 1$$. Then use this to prove that $$2\sqrt{m}-2<\displaystyle\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}-1$$ if $$m\geq 2$$.

I have proved the first inequality, and using that I took $$n=1,2,\ldots,m$$ to get the following inequalities:

$$2(\sqrt{2}-\sqrt{1})< \color{red}{\frac{1}{\sqrt{1}}<2(\sqrt{1}-\sqrt{0})}$$
$$2(\sqrt{3}-\sqrt{2})<\frac{1}{\sqrt{2}}<2(\sqrt{2}-\sqrt{1})$$
$$2(\sqrt{4}-\sqrt{3})<\frac{1}{\sqrt{3}}<2(\sqrt{3}-\sqrt{2})$$
$$\vdots$$
$$2(\sqrt{m+1}-\sqrt{m})<\frac{1}{\sqrt{m}}<2(\sqrt{m}-\sqrt{m-1})$$

Adding them, I get

$$2(\sqrt{m+1}-\sqrt{1})<\displaystyle\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}$$

and, since $$\sqrt{m+1}>\sqrt{m}$$, this implies

$$2\sqrt{m}-2<\displaystyle\sum_{n=1}^m\frac{1}{\sqrt{n}}<2\sqrt{m}$$

so that the left inequality is the desired one. However, I'm unsure how to get the right side. Does anyone have any hints? Thank you!
The inequality in red, $\frac{1}{\sqrt{1}}<2(\sqrt{1}-\sqrt{0})$, says that $1<2$. You could improve that if you replace it by $\frac{1}{\sqrt{1}}\leqslant 1$. Then when you add the right inequalities, you should get what you want.
 
Ah! Very nice. Thank you!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top