rxh140630
- 60
- 11
- Homework Statement
- prove lg(n!) = thetha(nlgn) where lg n is log with base = 2. Use Sterling's approximation as a hint
- Relevant Equations
- Sterling's approximation: [itex]n! = \sqrt(2*pi*n)(\frac{n}{e})^n(1+ \theta{1/n}) [/itex]
Sterling's approximation: n! = \sqrt{2*pi*n}(\frac{n}{e})^n(1+ \theta(1/n))
So I need to prove
c_1nlgn ≤lg(\sqrt{2*pi*n}) + lg((\frac{n}{e})^n) + lg(1+ \theta(1/n))) ≤ c_2nlgn
My question is:
assume I've proven lg(\sqrt{2*pi*n}) as \theta(lgn)
Do I need to now prove that c_1nlgn ≤ lgn ≤ c_2nlgn ??
What if we assume I found that lg(\sqrt{2*pi*n}) as \theta(\sqrt{n})
Do I need to now prove that c_1nlgn ≤ \sqrt{n} ≤ c_2nlgn ??
Assuming the other terms in the sum g(\sqrt{2*pi*n}) + lg((\frac{n}{e})^n) + lg(1+ \theta(1/n))) are proven to be \theta(nlgn)
So I need to prove
c_1nlgn ≤lg(\sqrt{2*pi*n}) + lg((\frac{n}{e})^n) + lg(1+ \theta(1/n))) ≤ c_2nlgn
My question is:
assume I've proven lg(\sqrt{2*pi*n}) as \theta(lgn)
Do I need to now prove that c_1nlgn ≤ lgn ≤ c_2nlgn ??
What if we assume I found that lg(\sqrt{2*pi*n}) as \theta(\sqrt{n})
Do I need to now prove that c_1nlgn ≤ \sqrt{n} ≤ c_2nlgn ??
Assuming the other terms in the sum g(\sqrt{2*pi*n}) + lg((\frac{n}{e})^n) + lg(1+ \theta(1/n))) are proven to be \theta(nlgn)