dodo
- 695
- 2
Let Q(\sqrt{k}), for some positive integer k, be the extension of the field of rationals with basis (1, \sqrt{k}). For example, in Q(\sqrt{5}) the element ({1 \over 2}, {1 \over 2}) is the golden ratio = {1 \over 2} + {1 \over 2}\sqrt{5}.
Given an extension Q(\sqrt{k}), let B(n) denote the 'Binet formula',
Conj. 1: B(n) produces only integers, iif k \equiv 1 \ ("mod" \ 4).
Conj. 2: When k \equiv 1 \ ("mod" \ 4), B(n) is the closed-form formula for the recurrence sequence
Given an extension Q(\sqrt{k}), let B(n) denote the 'Binet formula',
B(n) = {{p^n - (1-p)^n} \over \sqrt k}, n = 0, 1, 2, ...
where p = ({1 \over 2}, {1 \over 2}).Conj. 1: B(n) produces only integers, iif k \equiv 1 \ ("mod" \ 4).
Conj. 2: When k \equiv 1 \ ("mod" \ 4), B(n) is the closed-form formula for the recurrence sequence
x_n = x_{n-1} + A \; x_{n-2}, n = 2, 3, 4, ...
x_0 = 0, \ \ x_1 = 1
with A = {{k - 1} \over 4}.