- #1

Eclair_de_XII

- 1,083

- 91

- Homework Statement
- Let ##f:\mathbb{R}\longrightarrow \mathbb{R}## be defined by ##f(x)=\sqrt[3]{x}##. Prove that for all ##\epsilon>0##, there is a ##\delta>0## such that for ##a\in \mathbb{R}##, if ##|x-a|<\delta## for ##x\in \mathbb{R}##, then ##|\sqrt[3]{x}-\sqrt[3]{a}|<\epsilon##.

- Relevant Equations
- Difference of cubes formula: ##x^3-a^3=(x-a)(x^2+xa+a^2)##

No theorems allowed; must show by basic epsilon-delta proof.

The proof is given in two steps

1. Prove the lemma.

2. Use lemma to prove result.

%%1-Lemma%%

Assume ##a\neq0##. Define ##g:(-(|a|+1),|a|+1)\longrightarrow \mathbb{R}## by ##g(x)=\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}##. Then ##g## is bounded from below by some positive number ##m##.

---proof---

\begin{align}

g(x)&=&\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\\

&=&\sqrt[3]{x^2}+\sqrt[3]{xa}+\frac{1}{4}\sqrt[3]{a^2}+\frac{3}{4}\sqrt[3]{a^2}\\

&=&\left(\sqrt[3]{x}+\frac{1}{2}\sqrt[3]{a}\right)^2+\frac{3}{4}\sqrt[3]{a^2}\\

&\geq&\frac{3}{4}\sqrt[3]{a^2}\\

&=&m

\end{align}

%%2-Attempt at Proof%%

Let ##\epsilon>0## and set ##\delta\leq\min\{1,\frac{\epsilon}{m}\}##. For ##a\neq0##, if ##|x-a|=|\sqrt[3]x-\sqrt[3]a|\left|\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\right|<\delta##, then:

\begin{align}

1&>&|x-a|\\

&\geq&||x|-|a||\\

&\geq&|x|-|a|

\end{align}

This implies that ##|x|<1+|a|##, which gives the necessary condition for the lemma.

\begin{align}

\left|\sqrt[3]x-\sqrt[3]a\right|&=&\frac{|x-a|}{\left|\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\right|}\\

&=&\frac{|x-a|}{\left|g(x)\right|}\\

&\leq&\frac{|x-a|}{m}\\

&<&\delta\cdot m\\

&\leq&\frac{\epsilon}{m}\cdot m\\

&<&\epsilon

\end{align}

If ##a=0##, then set ##\delta=\epsilon^3## so that if ##|x|<\delta##, then ##\left|\sqrt[3]x\right|<\delta^{\frac{1}{3}}=(\epsilon^3)^\frac{1}{3}=\epsilon##.

1. Prove the lemma.

2. Use lemma to prove result.

%%1-Lemma%%

Assume ##a\neq0##. Define ##g:(-(|a|+1),|a|+1)\longrightarrow \mathbb{R}## by ##g(x)=\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}##. Then ##g## is bounded from below by some positive number ##m##.

---proof---

\begin{align}

g(x)&=&\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\\

&=&\sqrt[3]{x^2}+\sqrt[3]{xa}+\frac{1}{4}\sqrt[3]{a^2}+\frac{3}{4}\sqrt[3]{a^2}\\

&=&\left(\sqrt[3]{x}+\frac{1}{2}\sqrt[3]{a}\right)^2+\frac{3}{4}\sqrt[3]{a^2}\\

&\geq&\frac{3}{4}\sqrt[3]{a^2}\\

&=&m

\end{align}

%%2-Attempt at Proof%%

Let ##\epsilon>0## and set ##\delta\leq\min\{1,\frac{\epsilon}{m}\}##. For ##a\neq0##, if ##|x-a|=|\sqrt[3]x-\sqrt[3]a|\left|\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\right|<\delta##, then:

\begin{align}

1&>&|x-a|\\

&\geq&||x|-|a||\\

&\geq&|x|-|a|

\end{align}

This implies that ##|x|<1+|a|##, which gives the necessary condition for the lemma.

\begin{align}

\left|\sqrt[3]x-\sqrt[3]a\right|&=&\frac{|x-a|}{\left|\sqrt[3]{x^2}+\sqrt[3]{xa}+\sqrt[3]{a^2}\right|}\\

&=&\frac{|x-a|}{\left|g(x)\right|}\\

&\leq&\frac{|x-a|}{m}\\

&<&\delta\cdot m\\

&\leq&\frac{\epsilon}{m}\cdot m\\

&<&\epsilon

\end{align}

If ##a=0##, then set ##\delta=\epsilon^3## so that if ##|x|<\delta##, then ##\left|\sqrt[3]x\right|<\delta^{\frac{1}{3}}=(\epsilon^3)^\frac{1}{3}=\epsilon##.

Last edited: