MHB Proving Divisibility of 5c+9d and 3c+10d by 23

  • Thread starter Thread starter Petek
  • Start date Start date
  • Tags Tags
    Divisibility
AI Thread Summary
The discussion focuses on proving that if 5c + 9d is divisible by 23, then 3c + 10d is also divisible by 23, where c and d are integers. Participants share solutions, with one user acknowledging a second approach that involves elementary number theory and Diophantine equations. The conversation highlights the collaborative nature of problem-solving in mathematics, with users expressing gratitude for each other's contributions. The thread emphasizes the importance of exploring multiple methods to reach a solution. Overall, the discussion showcases the interplay between different mathematical techniques in proving divisibility.
Petek
Gold Member
Messages
405
Reaction score
37
Let c and d be integers. Suppose that 5c + 9d is divisible by 23. Show that 3c + 10d also is divisible by 23.
 
Mathematics news on Phys.org
5c + 9d is divisible by 23
multiplying by 15
75c + 135d is divisible by 23

subtracting 69c + 115d a multiple of 23 we have

6c + 20d is divisible by by 23

or 2(3c+ 10d) is divisible by by 23

as 2 is not divisible by 23 so 3c + 10d is divisible by 23
 
@kaliprasad Thanks for your solution. In addition to yours, I found a second solution that requires more knowledge about elementary number theory. As a hint, it uses facts about Diophantine equations. I'll post again in a few days if no one finds what I was thinking of.
 
First observe that $5^{-1}\equiv -9\pmod{23}$. That is because $5\cdot -9\equiv -45 \equiv 1\pmod{23}$.

That fact that $5c+9d$ is divisible by $23$ means:
\[ 5c + 9d\equiv 0\pmod{23}\implies c\equiv 5^{-1}\cdot -9d\pmod{23}\implies c\equiv -9\cdot -9 d\equiv 81 d\equiv 12d\pmod{23} \]
Therefore:
\[ 3c + 10d \equiv 3\cdot 12d+10d\equiv 46 d\equiv 0 \pmod{23} \]
So $3c + 10d$ is also divisible by $23$.
 
The solutions of $23\mid 5c+9d$ are $c=-9+23k$ and $d=5+23m$.
Substitute in $3c+10d$ to find $3(-9+23k)+10(5+23m)=-23+23(3k+10m)$, which is divisible by $23$.
 
Last edited:
Klass' second solution is the alternate one that I had in mind. Thanks to all for their contributions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top