- 920
- 1,221
Homework Statement
Show that \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n}{k} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n-1} + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}
Homework Equations
The Attempt at a Solution
Writing out few of the summands:
\frac{n!}{1\cdot 1!(n-1)!} - \frac{n!}{2\cdot 2!(n-2)!} + \frac{n!}{3\cdot 3!(n-3)!} - \frac{n!}{4\cdot 4!(n-4)!} +...\\<br /> n!(\frac{1}{1\cdot 1!(n-1)!}-\frac{1}{2\cdot 2!(n-2)!}+\frac{1}{3\cdot 3!(n-3)!}-\frac{1}{4\cdot 4!(n-4)!} + ...)
if this really adds up the way it's going to, I would somehow have to show that what is between the parenthesis adds up to \frac{1}{k\cdot n!}then n!\cdot \frac{1}{k\cdot n!} would be 1/k: what I am looking for.
How should I proceed?