MHB Proving Equality in Real Numbers: The Case of a+b+c=abc

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on proving the equality involving real numbers a, b, and c, where a + b + c = abc. The proof utilizes trigonometric identities, specifically relating the tangents of angles A, B, and C, to establish the required equality. It shows that if a = tan A, b = tan B, and c = tan C, then the relationship leads to the conclusion that a/(1-a^2) + b/(1-b^2) + c/(1-c^2) equals 4abc divided by the product of (1-a^2)(1-b^2)(1-c^2). The participants confirm they arrived at the solution using similar methods. The discussion highlights the interplay between algebra and trigonometry in solving the equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a, b$ and $c$ be real numbers, all different from -1 and 1, such that $a+b+c=abc$. Prove that $$\frac{a^2}{1-a^2}+\frac{b^2}{1-b^2}+\frac{c^2}{1-c^2}=\frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$$
 
Mathematics news on Phys.org
anemone said:
Let $a, b$ and $c$ be real numbers, all different from -1 and 1, such that $a+b+c=abc$. Prove that $$\frac{a^2}{1-a^2}+\frac{b^2}{1-b^2}+\frac{c^2}{1-c^2}=\frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$$

(a + b+ c) = abc

so a = - (b+ c)/(1-bc)

if a = tan A , b = tan B , c = tan C

then tan A = - tan (B+C)

or A + B + C = npi

so 2A + 2B + 2C= 2npi

so tan 2A = tan (2npi- 2B - 2C)

or tan 2A = - tan (2B + 2C)
= (tan 2B + tan 2C)/( tan 2B tan 2C -1)

or tan 2A tan 2B tan 2C - tan 2A = tan 2B + tan 2C
or tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

or
2tan A/(1-tan ^2A) + 2 tan B/(1-tan ^2 B) + 2 tanC /(1 - tan^2C) = 8 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
tan A/(1-tan ^2A) + tan B/(1-tan ^2 B) + tanC /(1 - tan^2C) = 4 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
a/(1-a^2) + b/(1-b^2) + c/(1 - c^2) = 4abc/(( 1-a^2)(1-b^2)(1- c^2))
 
kaliprasad said:
(a + b+ c) = abc

so a = - (b+ c)/(1-bc)

if a = tan A , b = tan B , c = tan C

then tan A = - tan (B+C)

or A + B + C = npi

so 2A + 2B + 2C= 2npi

so tan 2A = tan (2npi- 2B - 2C)

or tan 2A = - tan (2B + 2C)
= (tan 2B + tan 2C)/( tan 2B tan 2C -1)

or tan 2A tan 2B tan 2C - tan 2A = tan 2B + tan 2C
or tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

or
2tan A/(1-tan ^2A) + 2 tan B/(1-tan ^2 B) + 2 tanC /(1 - tan^2C) = 8 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
tan A/(1-tan ^2A) + tan B/(1-tan ^2 B) + tanC /(1 - tan^2C) = 4 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
a/(1-a^2) + b/(1-b^2) + c/(1 - c^2) = 4abc/(( 1-a^2)(1-b^2)(1- c^2))

Thanks again for participating, kaliprasad and just so you know, you and I used the same approach to solve this problem!:)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top