MHB Proving Equality in Real Numbers: The Case of a+b+c=abc

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on proving the equality involving real numbers a, b, and c, where a + b + c = abc. The proof utilizes trigonometric identities, specifically relating the tangents of angles A, B, and C, to establish the required equality. It shows that if a = tan A, b = tan B, and c = tan C, then the relationship leads to the conclusion that a/(1-a^2) + b/(1-b^2) + c/(1-c^2) equals 4abc divided by the product of (1-a^2)(1-b^2)(1-c^2). The participants confirm they arrived at the solution using similar methods. The discussion highlights the interplay between algebra and trigonometry in solving the equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a, b$ and $c$ be real numbers, all different from -1 and 1, such that $a+b+c=abc$. Prove that $$\frac{a^2}{1-a^2}+\frac{b^2}{1-b^2}+\frac{c^2}{1-c^2}=\frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$$
 
Mathematics news on Phys.org
anemone said:
Let $a, b$ and $c$ be real numbers, all different from -1 and 1, such that $a+b+c=abc$. Prove that $$\frac{a^2}{1-a^2}+\frac{b^2}{1-b^2}+\frac{c^2}{1-c^2}=\frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$$

(a + b+ c) = abc

so a = - (b+ c)/(1-bc)

if a = tan A , b = tan B , c = tan C

then tan A = - tan (B+C)

or A + B + C = npi

so 2A + 2B + 2C= 2npi

so tan 2A = tan (2npi- 2B - 2C)

or tan 2A = - tan (2B + 2C)
= (tan 2B + tan 2C)/( tan 2B tan 2C -1)

or tan 2A tan 2B tan 2C - tan 2A = tan 2B + tan 2C
or tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

or
2tan A/(1-tan ^2A) + 2 tan B/(1-tan ^2 B) + 2 tanC /(1 - tan^2C) = 8 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
tan A/(1-tan ^2A) + tan B/(1-tan ^2 B) + tanC /(1 - tan^2C) = 4 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
a/(1-a^2) + b/(1-b^2) + c/(1 - c^2) = 4abc/(( 1-a^2)(1-b^2)(1- c^2))
 
kaliprasad said:
(a + b+ c) = abc

so a = - (b+ c)/(1-bc)

if a = tan A , b = tan B , c = tan C

then tan A = - tan (B+C)

or A + B + C = npi

so 2A + 2B + 2C= 2npi

so tan 2A = tan (2npi- 2B - 2C)

or tan 2A = - tan (2B + 2C)
= (tan 2B + tan 2C)/( tan 2B tan 2C -1)

or tan 2A tan 2B tan 2C - tan 2A = tan 2B + tan 2C
or tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

or
2tan A/(1-tan ^2A) + 2 tan B/(1-tan ^2 B) + 2 tanC /(1 - tan^2C) = 8 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
tan A/(1-tan ^2A) + tan B/(1-tan ^2 B) + tanC /(1 - tan^2C) = 4 tan A tanC tanC/(( 1-tan ^2A)(1-tan ^2 B)(1- tan ^2C)

or
a/(1-a^2) + b/(1-b^2) + c/(1 - c^2) = 4abc/(( 1-a^2)(1-b^2)(1- c^2))

Thanks again for participating, kaliprasad and just so you know, you and I used the same approach to solve this problem!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top