Proving Every Infinite Set Has An Infinite Countable Subset

  • Thread starter Thread starter Doom of Doom
  • Start date Start date
Doom of Doom
Messages
85
Reaction score
0
So, the task is to prove: Every infinite set has a infinite countable subset.


2. A set S is countable if there exists a bijection \phi: \mathbb{N}\rightarrow X


The Attempt at a Solution

 
Physics news on Phys.org
You can easily construct a countable subset \{s_1,s_2,\dots\} wiht s_1,s_2,\dots being elements of S.

Let s_1 be some element of S. Let inductively s_n be some element of S-\{s_1,\dots,s_{n-1}\}.

Can you show that this works for any infinite set, and that it does not work for any finite set?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top