Proving f=0 on [a,b] with Analysis

  • Thread starter Thread starter ren_101
  • Start date Start date
  • Tags Tags
    Analysis
ren_101
Messages
1
Reaction score
0

Homework Statement


f is continuous on [a,b]
f_{1}(x)=\int^x_a f(t)dt
f_{2}(x)=\int^x_a f_{1}(t)dt
...
\forall x\in[a,b],\exists n depends on x , such that f_{n}(x)=0.
prove that f\equiv0.

Homework Equations


mathematical analysis

The Attempt at a Solution


copy the taylor theorem 's proof?
but I get nothing.
 
Physics news on Phys.org
If, for some n, fn is identically 0, then it is a constant and so its derivative is identically equal to 0. But, by the fundamental theorem, the derivative of f_n(x)= \int_a^x f_{n-1}(t)dt is fn-1(x). Therefore, if fn(x) is identically 0 on [a, b], so is fn-1(x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top