latentcorpse
- 1,411
- 0
How do I verify \{ \gamma^5 , \gamma^\mu \} = 0
I have
\{ \gamma^5 , \gamma^\mu \} = \gamma^5 \gamma^\mu + \gamma^\mu \gamma^5
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^5 \gamma^0 \gamma^1 \gamma^2 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^5 \gamma^1 \gamma^2 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^5 \gamma^2 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^1 \gamma^2 \gamma^5 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )
But this is not quite right, because at some point I will have shifted the \gamma^\mu past itself and so I will get an additional term +2 \eta^{ \mu \mu} since \{ \gamma^\mu , \gamma^\nu \} = 2 \eta^{\mu \nu}
So I should get three terms:
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 -2 \eta^{\mu \mu} \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )
and then
= -i ( (2-2 \eta^{\mu \mu}) \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5) \neq 0 since \eta^{\mu \mu} = 4, no?
I have
\{ \gamma^5 , \gamma^\mu \} = \gamma^5 \gamma^\mu + \gamma^\mu \gamma^5
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^5 \gamma^0 \gamma^1 \gamma^2 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^5 \gamma^1 \gamma^2 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^5 \gamma^2 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 - \gamma^0 \gamma^1 \gamma^2 \gamma^5 \gamma^3 )
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )
But this is not quite right, because at some point I will have shifted the \gamma^\mu past itself and so I will get an additional term +2 \eta^{ \mu \mu} since \{ \gamma^\mu , \gamma^\nu \} = 2 \eta^{\mu \nu}
So I should get three terms:
= -i ( \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 + \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 -2 \eta^{\mu \mu} \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5 )
and then
= -i ( (2-2 \eta^{\mu \mu}) \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^5) \neq 0 since \eta^{\mu \mu} = 4, no?