Proving geometric theorems by vector method

AI Thread Summary
Proving geometric theorems using vectors can be challenging, particularly in determining when to apply dot and cross products. A systematic approach is beneficial for tackling these problems effectively. Providing specific examples of difficulties encountered can facilitate better guidance and support from others. Engaging with peers to discuss problem-solving strategies can enhance understanding. Seeking assistance with concrete cases often leads to clearer insights and solutions.
AlbertEinstein
Messages
113
Reaction score
1
I am learning vectors in which there is a section in which geometric theorems are proved with the help of vectors. However while solving problems I often face difficulty on how to proceed ,where to use dot product, cross and etc.Is there any systematic manner on how to prove these ? Please help.:frown:
 
Mathematics news on Phys.org
Why don't you give us some examples of problems you've had trouble with, and tell us how you've tried to approach them so far, and we'll see if we can help.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top