- 3,802
- 95
Homework Statement
Show that if \theta is not a multiple of 2\pi then
Im\left(\frac{1-e^{i(n+1)\theta}}{1-e^{i\theta}}\right)=\frac{sin\left(\frac{1}{2}(n+1)\theta\right)sin(\frac{1}{2}n\theta)}{sin\frac{1}{2}\theta}
Homework Equations
e^{i\theta}=cos\theta+isin\theta
The Attempt at a Solution
I noticed that \frac{1-e^{i(n+1)\theta}}{1-e^{i\theta}}\right) is a geometric summation with e^{i\theta}=r then we have:
1+e^{i\theta}+e^{i2\theta}+...+e^{in\theta}
So,
Im\left(1+e^{i\theta}+e^{i2\theta}+...+e^{in\theta}\right)=sin\theta+sin2\theta+...+sin(n\theta)
I have no idea how to show this summation is equal to what I have to show. Most likely I'm not even headed in the right direction.