phonic
- 28
- 0
Dear all,
I want to prove that the following inequalities are true. I hope you can give some hints. Thanks a lot!
Define
<br /> c_{\beta}=\sum_{j=1}^n<br /> \sigma_j^{\frac{2\beta}{\beta+1}}\sum_{1\leq i<k \leq n}\Big(<br /> \sigma_k^{\frac{2}{3(\beta+1)}} +<br /> \sigma_i^{\frac{2}{3(\beta+1)}} \Big)^3 , \mbox{\hspace{1.5cm}}0\leq\sigma_i^2\leq 1, \forall i\in \{1,2,\cdots,n\}<br />
Prove that:
1)
<br /> n \sum_{1\leq i <k \leq n}\Big(<br /> \sigma_k^{\frac{2}{3}} +<br /> \sigma_i^{\frac{2}{3}} \Big)^3 \geq \sum_{j=1}^{n}\sigma_j \sum_{1\leq i <k \leq n}\Big(<br /> \sigma_k^{\frac{1}{3}} +<br /> \sigma_i^{\frac{1}{3}} \Big)^3<br />
and
2)
<br /> 4n(n-1) \sum_{j=1}^n \sigma_j^2 \geq \sum_{j=1}^{n} \sigma_j \sum_{1\leq i <k \leq n}\Big(<br /> \sigma_k^{\frac{1}{3}} +<br /> \sigma_i^{\frac{1}{3}} \Big)^3<br />
I.e.:
<br /> c_0 \geq c_1<br />
<br /> c_{\infty} \geq c_1<br />
It is easy to prove when n=2 by taking the dirivative with respect to \sigma_1, and showing that the dirivative switches the sign at point \sigma_1 = \sigma_2. How to prove when n>2?
Thanks a lot!
I want to prove that the following inequalities are true. I hope you can give some hints. Thanks a lot!
Define
<br /> c_{\beta}=\sum_{j=1}^n<br /> \sigma_j^{\frac{2\beta}{\beta+1}}\sum_{1\leq i<k \leq n}\Big(<br /> \sigma_k^{\frac{2}{3(\beta+1)}} +<br /> \sigma_i^{\frac{2}{3(\beta+1)}} \Big)^3 , \mbox{\hspace{1.5cm}}0\leq\sigma_i^2\leq 1, \forall i\in \{1,2,\cdots,n\}<br />
Prove that:
1)
<br /> n \sum_{1\leq i <k \leq n}\Big(<br /> \sigma_k^{\frac{2}{3}} +<br /> \sigma_i^{\frac{2}{3}} \Big)^3 \geq \sum_{j=1}^{n}\sigma_j \sum_{1\leq i <k \leq n}\Big(<br /> \sigma_k^{\frac{1}{3}} +<br /> \sigma_i^{\frac{1}{3}} \Big)^3<br />
and
2)
<br /> 4n(n-1) \sum_{j=1}^n \sigma_j^2 \geq \sum_{j=1}^{n} \sigma_j \sum_{1\leq i <k \leq n}\Big(<br /> \sigma_k^{\frac{1}{3}} +<br /> \sigma_i^{\frac{1}{3}} \Big)^3<br />
I.e.:
<br /> c_0 \geq c_1<br />
<br /> c_{\infty} \geq c_1<br />
It is easy to prove when n=2 by taking the dirivative with respect to \sigma_1, and showing that the dirivative switches the sign at point \sigma_1 = \sigma_2. How to prove when n>2?
Thanks a lot!