Proving Inequality: (6x^2 - 7sinx)/(3x+1) >1000

  • Thread starter Thread starter nhrock3
  • Start date Start date
  • Tags Tags
    Proof
nhrock3
Messages
403
Reaction score
0
i have this question and solution
2rdb1ae.jpg

i have a similar question which i can't solve similarly

i need to prove
(6x^2 - 7sinx)/(3x+1) >1000 for x>m and x>0
(6x^2 - 7sinx)/(3x+1) >(6x^2 - 7)/(3x+1)

that as far as i could go
 
Physics news on Phys.org
Keep making approximations

(6x^2 - 7sinx)/(3x+1) >(6x^2 - 7)/(3x+1) > (6x^2 - 7sinx)/(3x+1) >(6x^2 - 7)/(3x+3x)

(6x^2 - 7)/(3x+3x) = (6x^2 -7)/6x = x -7/(6x)
 
(6x^2 - 7sinx)/(3x+1) >(6x^2 - 7)/(3x+3x)=x-7/x
what now
?
 
nhrock3 said:
(6x^2 - 7sinx)/(3x+1) >(6x^2 - 7)/(3x+3x)=x-7/x
what now
?

What do you mean "what now "? Are not capable of thinking for yourself ?

If you have something like

x - 7/x if x>M and M > 1008

then

x - 7/x > x -7 > 1008 -7 = 1001
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top