Proving Infinite Limit using Delta-Epsilon: One More Limit Homework Statement

  • Thread starter Thread starter Math_Geek
  • Start date Start date
  • Tags Tags
    Limit
Math_Geek
Messages
23
Reaction score
0

Homework Statement


lim as x goes to 1 from the right of 2^1/x-1=inf


Homework Equations



solve using delta-epsilon

The Attempt at a Solution



i am not sure how to prove an infinite limit, I have a defn that states, If for epsilon>0 there exists an M>0 such that x>M implies |f(x)-L|< epsilon. My main problem is that I am not sure how to do it, and how to get the power of two out of the way
 
Physics news on Phys.org
take the log
 
is the definition right?
 
did you mean lim x->1+ 2^(1/(1-x)) = 0?
 
Last edited:
no the problem says it goes to inf
 
Math_Geek said:
no the problem says it goes to inf

Oh it's lim x->1+ 2^(1/(x-1)), which is inf yea


The correct definition is

lim x->a+ f(x) = inf if for all M > 0 there is a d > 0 s.t. 0 < |x-1| < d and x > 1 implies |f(x)| > M
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Back
Top