Proving integrand of odd function from -a to a is 0

  • Thread starter Thread starter tainted
  • Start date Start date
  • Tags Tags
    Function
tainted
Messages
28
Reaction score
0

Homework Statement



Suppose f is a continuous function defined on an interval [-a, a]. Show that if f is odd, then
[-a,a]\int f(x)\,dx = 0

Homework Equations


If f is odd, then
##f(-x) = -f(x)##
##u=-x##
Our TA told us to set u equal to -x.

The Attempt at a Solution


## u = -x ##
## -du = dx ##

##-[a,-a]\int f(x)\,dx##
##[a,-a]\int -f(x)\,dx##
definition of odd function
##[a,-a]\int f(-x)\,dx##

##-\int f(u)\,du##
##-F(-x)|[a,-a]##
##F(-x)|[-a,a]##
##F(-a) - F(-(-a))##
##F(-a) - F(a)##
## -2F(a) ##
Obviously I went wrong in my proof somewhere or I got distracted and did useless steps.
Thanks in advance!
 
Physics news on Phys.org
Write ##\int_{-a}^a f(x)\ dx = \int_{-a}^0 f(x)\ dx +\int_{0}^a f(x)\ dx ## and make that substitution on the first integral only.
 
##\int_{-a}^a f(x)\ dx = \int_{-a}^0 f(x)\ dx +\int_{0}^a f(x)\ dx##
## \int_{-a}^0 f(x)\ dx ##
##-\int_{0}^{-a} f(x)\ dx ##
##\int_{0}^{-a} -f(x)\ dx ##
##\int_{0}^{-a} f(-x)\ dx ##
##\int f(u)\,dx ##
## -F(u) = -F(-x) ##
## -F(-x)|_{0}^{-a} ##
## -[F(-(-a)) - F(0)] ##
## [F(0) - F(a)] ##

##\int_{0}^a f(x)\ dx##
## F(x)|_{0}^{a} ##
##[F(a) - F(0)]##


##F(0) - F(a) + F(a) - F(0) = 0##

Thanks man!
 
It is much less convoluted to do it like this with ##\int_{-a}^0 f(x)\, dx##. Let ##u = -x,\, du=-dx## giving ##\int_a^0 f(-u)(-du)=-\int_0^a f(u)\, du##, which cancels out the ##\int_0^a f(x)\, dx##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top