PFuser1232
- 479
- 20
Is there a way to formally prove that if ##f## and ##g## are multiplicative inverses of each other, then ##f^{-1} (x) = g^{-1} (\frac{1}{x})##?
MohammedRady97 said:Is there a way to formally prove that if ##f## and ##g## are multiplicative inverses of each other, then ##f^{-1} (x) = g^{-1} (\frac{1}{x})##?
Perfect. Thanks!pasmith said:Let h be the function which takes x to 1/x. Now if f(x)g(x) = 1 for all x then f = h \circ g. Then f^{-1} = g^{-1} \circ h^{-1}. But h = h^{-1} so f^{-1} = g^{-1} \circ h as required.