Proving Invertibility of a Nilpotent Matrix: Formula for (I-B)^-1

  • Thread starter Thread starter bonzy87
  • Start date Start date
bonzy87
Messages
5
Reaction score
0
1. If B is any nilpotent matrix prove that I - B is invertible and find a formula for (I-B)^-1 in terms of powers of B?



2. can't seem to figure out how to get the answer to this one, drawn a mental blank any help would be appreciated
 
Physics news on Phys.org
so B^k = 0 for some k

say B^2 = 0,

Notice (I-B)(I + B) = I

Now what if B^3 = 0

then (I-B)*something = I


generalize
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top