physicsuser
- 82
- 1
need to prove this
<br /> \frac{\urcorner P \equiv false}{P \equiv true}<br />
here is what I did
using Leibniz
<br /> \frac{X \equiv Y}{E[z:=X] \equiv E[z:=Y]}<br />
<br /> X=\urcorner P<br />
<br /> Y=false<br />
<br /> E:\urcorner z<br />
<br /> z=z<br />
<br /> \frac{\urcorner P \equiv false}{\urcorner\urcorner P \equiv \urcorner false}<br />
since \urcorner\urcorner P \equiv P
and \urcorner false \equiv true
<br /> \frac{\urcorner P \equiv false}{P \equiv true}<br />
is this a proof?
<br /> \frac{\urcorner P \equiv false}{P \equiv true}<br />
here is what I did
using Leibniz
<br /> \frac{X \equiv Y}{E[z:=X] \equiv E[z:=Y]}<br />
<br /> X=\urcorner P<br />
<br /> Y=false<br />
<br /> E:\urcorner z<br />
<br /> z=z<br />
<br /> \frac{\urcorner P \equiv false}{\urcorner\urcorner P \equiv \urcorner false}<br />
since \urcorner\urcorner P \equiv P
and \urcorner false \equiv true
<br /> \frac{\urcorner P \equiv false}{P \equiv true}<br />
is this a proof?