dwsmith said:
Suppose $\lim\limits_{n\to\infty}a_n = a$. Prove using the delta-epsilon definition that $\lim\limits_{n\to\infty}a_n^2 = a^2$.
Let $\epsilon > 0$ be given. Let $N\in\mathbb{Z}$. Then for $n > N$, $|a_n - a| < \epsilon$.
Then
$$
|a_n^2 - a^2| = |(a_n - a)(a_n + a)| < \epsilon |a_n + a|
$$
I am stuck here.
Let's suppose to have two sequences $a_{n}$ and $b_{n}$ and that $\displaystyle \lim_{n \rightarrow \infty} a_{n}=a$ and $\displaystyle \lim_{n \rightarrow \infty} b_{n}=b$. That means that...
$\lim_{n \rightarrow \infty} (a_{n}-a)=\lim_{n \rightarrow \infty} (b_{n}-b)=0$ (1)
... and therefore, given a $\varepsilon>0$, it exists an $N$ for which $\forall n>N$ is...
$\displaystyle |(a_{n}-a)-0|< \sqrt{\varepsilon}$
$\displaystyle |(b_{n}-b)-0|< \sqrt{\varepsilon}$ (2)... and then multiplying the (2) toghether...
$|(a_{n}-a)\ (b_{n}-b)-0|=|a_{n}-a|\ |b_{n}-b| < \varepsilon \implies \lim_{n \rightarrow \infty} (a_{n}-a)\ (b_{n}-b)=0$ (3)
Now we use (3) and the identity...
$\displaystyle a_{n}\ b_{n}= (a_{n}-a)\ (b_{n}-b) + b\ a_{n} + a\ b_{n} - a\ b $ (4)
... to obtain... $\displaystyle \lim_{n \rightarrow \infty} a_{n}\ b_{n} = \lim_{n \rightarrow \infty} (a_{n}-a)\ (b_{n}-b) + \lim_{n \rightarrow \infty} b\ a_{n} + \lim_{n \rightarrow \infty} a\ b_{n} - \lim_{n \rightarrow \infty} a\ b = b\ a + a\ b - a\ b = a\ b$ (5)
In other word
the limit of the product is the product of limits. In the particular case $b_{n}=a_{n}$ You have $\displaystyle \lim_{n \rightarrow \infty} a^{2}_{n}= a^{2}$... Kind regards $\chi$ $\sigma$