Proving $\lim_{n\to\infty}a_n^2 = a^2$ with Delta-Epsilon

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving the limit $\lim_{n\to\infty} a_n^2 = a^2$ using the delta-epsilon definition, given that $\lim_{n\to\infty} a_n = a$. The proof utilizes the inequality $|a_n^2 - a^2| = |(a_n - a)(a_n + a)|$ and establishes that for sufficiently large $n$, $|a_n - a| < \frac{\epsilon}{2|a|}$ leads to $|a_n^2 - a^2| < \epsilon$. The participants clarify that the argument holds for $a \neq 0$ and provide a structured approach to handle the case when $a = 0$. The proof is confirmed to be valid through the application of the product limit theorem.

PREREQUISITES
  • Understanding of the delta-epsilon definition of limits
  • Familiarity with basic algebraic manipulation of inequalities
  • Knowledge of sequences and their convergence properties
  • Experience with limit theorems, particularly the product limit theorem
NEXT STEPS
  • Study the delta-epsilon definition of limits in depth
  • Explore proofs involving limits of products and sums of sequences
  • Learn about the implications of limits for continuous functions
  • Investigate examples of sequences converging to zero and their limits
USEFUL FOR

Mathematics students, educators, and anyone studying real analysis or calculus, particularly those focused on understanding limits and their proofs.

Dustinsfl
Messages
2,217
Reaction score
5
Suppose $\lim\limits_{n\to\infty}a_n = a$. Prove using the delta-epsilon definition that $\lim\limits_{n\to\infty}a_n^2 = a^2$.

Let $\epsilon > 0$ be given. Let $N\in\mathbb{Z}$. Then for $n > N$, $|a_n - a| < \epsilon$.

Then
$$
|a_n^2 - a^2| = |(a_n - a)(a_n + a)| < \epsilon |a_n + a|
$$

I am stuck here.
 
Physics news on Phys.org
I think you can argue as follows: consider

$$|a_n +a| = |a_n - a + 2a| \leq |a_n -a| + 2|a| < \varepsilon + 2|a|.$$

The result is trivial if $a =0$, therefore it's safe to assume $a \neq 0$.

Since $\varepsilon$ is arbitrary, you could say that $|a_n +a| \leq 2 |a|$.

Thus, take $N_0 \in \mathbb{N}$ such that for all $n \geq N_0$ we have $|a_n -a| < \frac{\varepsilon}{2 |a|}$.

It follows that for all $n \geq N_0$ we have

$$|a_n^2 -a^2| = |(a_n -a)(a_n +a)| \leq |(a_n -a)| \cdot 2 |a| < \frac{\varepsilon}{2 |a|} \cdot 2 |a| = \varepsilon.$$

Again, not entirely sure. Hope it helps, at least. :D
 
dwsmith said:
Suppose $\lim\limits_{n\to\infty}a_n = a$. Prove using the delta-epsilon definition that $\lim\limits_{n\to\infty}a_n^2 = a^2$.

Let $\epsilon > 0$ be given. Let $N\in\mathbb{Z}$. Then for $n > N$, $|a_n - a| < \epsilon$.

Then
$$
|a_n^2 - a^2| = |(a_n - a)(a_n + a)| < \epsilon |a_n + a|
$$

I am stuck here.

Let's suppose to have two sequences $a_{n}$ and $b_{n}$ and that $\displaystyle \lim_{n \rightarrow \infty} a_{n}=a$ and $\displaystyle \lim_{n \rightarrow \infty} b_{n}=b$. That means that...

$\lim_{n \rightarrow \infty} (a_{n}-a)=\lim_{n \rightarrow \infty} (b_{n}-b)=0$ (1)

... and therefore, given a $\varepsilon>0$, it exists an $N$ for which $\forall n>N$ is...

$\displaystyle |(a_{n}-a)-0|< \sqrt{\varepsilon}$

$\displaystyle |(b_{n}-b)-0|< \sqrt{\varepsilon}$ (2)... and then multiplying the (2) toghether...

$|(a_{n}-a)\ (b_{n}-b)-0|=|a_{n}-a|\ |b_{n}-b| < \varepsilon \implies \lim_{n \rightarrow \infty} (a_{n}-a)\ (b_{n}-b)=0$ (3)

Now we use (3) and the identity...

$\displaystyle a_{n}\ b_{n}= (a_{n}-a)\ (b_{n}-b) + b\ a_{n} + a\ b_{n} - a\ b $ (4)

... to obtain... $\displaystyle \lim_{n \rightarrow \infty} a_{n}\ b_{n} = \lim_{n \rightarrow \infty} (a_{n}-a)\ (b_{n}-b) + \lim_{n \rightarrow \infty} b\ a_{n} + \lim_{n \rightarrow \infty} a\ b_{n} - \lim_{n \rightarrow \infty} a\ b = b\ a + a\ b - a\ b = a\ b$ (5)

In other word the limit of the product is the product of limits. In the particular case $b_{n}=a_{n}$ You have $\displaystyle \lim_{n \rightarrow \infty} a^{2}_{n}= a^{2}$... Kind regards $\chi$ $\sigma$
 
chisigma said:
Let's suppose to have two sequences $a_{n}$ and $b_{n}$ and that $\displaystyle \lim_{n \rightarrow \infty} a_{n}=a$ and $\displaystyle \lim_{n \rightarrow \infty} b_{n}=b$. That means that...

$\lim_{n \rightarrow \infty} (a_{n}-a)=\lim_{n \rightarrow \infty} (b_{n}-b)=0$ (1)

... and therefore, given a $\varepsilon>0$, it exists an $N$ for which $\forall n>N$ is...

$\displaystyle |(a_{n}-a)-0|< \sqrt{\varepsilon}$

$\displaystyle |(b_{n}-b)-0|< \sqrt{\varepsilon}$ (2)... and then multiplying the (2) toghether...

$|(a_{n}-a)\ (b_{n}-b)-0|=|a_{n}-a|\ |b_{n}-b| < \varepsilon \implies \lim_{n \rightarrow \infty} (a_{n}-a)\ (b_{n}-b)=0$ (3)

Now we use (3) and the identity...

$\displaystyle a_{n}\ b_{n}= (a_{n}-a)\ (b_{n}-b) + b\ a_{n} + a\ b_{n} - a\ b $ (4)

... to obtain... $\displaystyle \lim_{n \rightarrow \infty} a_{n}\ b_{n} = \lim_{n \rightarrow \infty} (a_{n}-a)\ (b_{n}-b) + \lim_{n \rightarrow \infty} b\ a_{n} + \lim_{n \rightarrow \infty} a\ b_{n} - \lim_{n \rightarrow \infty} a\ b = b\ a + a\ b - a\ b = a\ b$ (5)

In other word the limit of the product is the product of limits. In the particular case $b_{n}=a_{n}$ You have $\displaystyle \lim_{n \rightarrow \infty} a^{2}_{n}= a^{2}$... Kind regards $\chi$ $\sigma$

Line (4) should be $+ab$. We would need a $-ab$ though which we don't have since we have a negative times a negative.
 
dwsmith said:
Line (4) should be $+ab$. We would need a $-ab$ though which we don't have since we have a negative times a negative.

Why don't develop the expression...

$\displaystyle (a_{n}-a)\ (b_{n}-b) + a\ b_{n} + b\ a_{n} -a\ b$ (1)

... and observe what is the result?...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
7K
  • · Replies 7 ·
Replies
7
Views
2K