Proving Limit Exists: xy/(x^2+y^2)^.5

  • Thread starter Thread starter hover
  • Start date Start date
  • Tags Tags
    Limit
hover
Messages
342
Reaction score
0

Homework Statement



Prove or disprove that the following limit exists

lim x->0 and y->0 of
xy/(x^2+y^2)^.5


Homework Equations



0 < ((x-a)^2+(y-b)^2)^.5 < delta

|f(x,y)-L| < epsilon


The Attempt at a Solution



Taking the limit from both the x-axis and y-axis separately, L=0. So

0 < (x^2+y^2) < delta and |xy/(x^2+y^2)| < epsilon

We know that

|xy/(x^2+y^2)| = |x||y|/(x^2+y^2)

and
|y| = (y^2)^.5 <= (x^2+y^2)^.5

|x||y|/(x^2+y^2) <= |x|(x^2+y^2)^.5/(x^2+y^2)^.5 = |x|

|x| <= (x^2+y^2)<delta < epsilon

so delta = epsilon

Is this right?
 
Physics news on Phys.org
hi hover! :smile:

(have a square-root: √ and a delta: δ and an epsilon: ε and try using the X2 tag just above the Reply box :wink:)

your method is basically correct, but your δ has to be the size of (x,y), not of x …

in other words, you can use the same method, to prove that for any ε, if |(x,y)| < ε, then |xy/√(x2 + y2)| < ε :wink:

(but if you know polar coordinates, then use them instead, it's much easier! :smile:)
 
Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top