I Proving Lorentz Metric on Real Type (1,0;1,0) Tensors in Wald Ch. 13

Click For Summary
The discussion centers on proving that the metric ##g_{AA'BB'} = \epsilon_{AB} \bar{\epsilon}_{A'B'}## is a Lorentz metric for real type ##(1,0;1,0)## tensors as outlined in Wald's Chapter 13. Participants explore the implications of the basis vectors defined in the context, particularly focusing on their orthonormality. It is established that terms involving ##\iota_A \iota^A## and ##o_A o^A## should equal zero due to the antisymmetry of the two-form ##\epsilon##, confirming orthogonality. The calculations demonstrate that the inner products yield the expected results, reinforcing the Lorentzian structure of the metric. The conclusion affirms that the basis vectors are indeed Minkowski orthonormal.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
In ch. 13, pg.349 of Wald it's asked to prove that ##g_{AA'BB'} = \epsilon_{AB} \bar{\epsilon}_{A'B'}## is a Lorentz metric on ##V## (containing the real elements of the vector space ##Y## of type ##(1,0;1,0)## tensors). Given the basis ##t^{AA'} = \dfrac{1}{\sqrt{2}}(o^A \bar{o}^{A'} + \iota^A \bar{\iota}^{A'})##, ##x^{AA'} = \dfrac{1}{\sqrt{2}}(o^A \bar{\iota}^{A'} + \iota^A \bar{o}^{A'})##, ##y^{AA'} = \dfrac{i}{\sqrt{2}}(o^A \bar{\iota}^{A'} - \iota^A \bar{o}^{A'})##, ##z^{AA'} = \dfrac{1}{\sqrt{2}}(o^A \bar{o}^{A'} - \iota^A \bar{\iota}^{A'})##, where ##o_A \iota^A = 1## by definition. I need to show that these are Minkowski orthonormal. So for example\begin{align*}
\epsilon_{AB} \bar{\epsilon}_{A'B'} t^{AA'} t^{BB'} &= \dfrac{1}{2} o_B o_{B'} o^B \bar{o}^{B'} + \dfrac{1}{2} o_B \bar{o}_{B'} \iota^B \bar{\iota}^{B'} + \dfrac{1}{2} \iota_B \bar{\iota}_{B'} o^B \bar{o}^{B'} + \dfrac{1}{2} \iota_B \bar{\iota}_{B'} \iota^B \bar{\iota}^{B'}
\end{align*}should be equal to ##1##. Since ##o_B \iota^B = 1## it also follows that
\begin{align*}
1 = o_B \iota^B = \epsilon_{AB} o^A \iota^B = - \epsilon_{BA} o^A \iota^B = -o^A \iota_A
\end{align*}therefore the middle two terms are both equal to ##\dfrac{1}{2}##. What I can't see is what to write for ##\iota_A \iota^A## and ##o_A o^A##; they should be zero (right...?), but why?
 
Last edited:
Physics news on Phys.org
##o
ergospherical said:
What I can't see is what to write for ##\iota_A \iota^A## and ##o_A o^A##; they should be zero (right...?), but why?
##o_A o^A=\epsilon_{BA}o^B o^A=0## The two form ##\epsilon## is antysymmetric. Everything is orthogonal to itself.
 
  • Like
Likes ergospherical
martinbn said:
##o_A o^A=\epsilon_{BA}o^B o^A=0## The two form ##\epsilon## is antysymmetric. Everything is orthogonal to itself.
ahhh course, thanks.
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
999
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
38
Views
654
  • · Replies 59 ·
2
Replies
59
Views
6K