acazosa
- 3
- 0
1. Homework Statement
So i have to solve this integral with dominate convergence theorem. How can i prove that the sequence f_{n}
it s monotone?
\lim_{n \rightarrow +infty} \int_{0}^{+infty} \frac{1 -sin(\frac{x}{n})}{\sqrt(x^2 +\frac{1}{2}}
So i have to solve this integral with dominate convergence theorem. How can i prove that the sequence f_{n}
it s monotone?
\lim_{n \rightarrow +infty} \int_{0}^{+infty} \frac{1 -sin(\frac{x}{n})}{\sqrt(x^2 +\frac{1}{2}}