I Proving ##\partial^{i} = g^{ik} \partial_{k}##

SplinterCell
Messages
17
Reaction score
0
Let ##\varphi## be some scalar field. In "The Classical Theory of Fields" by Landau it is claimed that
$$
\frac{\partial\varphi}{\partial x_i} = g^{ik} \frac{\partial \varphi}{\partial x^k}
$$
I wanted to prove this identity. Using the chain rule
$$
\frac{\partial}{\partial x_{i}}=\frac{\partial x^{k}}{\partial x_{i}}\frac{\partial}{\partial x^{k}}
$$
Differentiating ##x^{k}=g^{ik}x_{i}## with respect to ##x_i## yields
$$
\frac{\partial x^{k}}{\partial x_{i}}=g^{ik} \tag{*}
$$
which seems to prove the identity (?). However I'm not sure about the validity of the last step, especially because ##(*)## isn't mentioned in the relevant literature (either because it's too trivial or/and not useful or because it's wrong). I've only seen the metric tensor expressed as
$$
g_{ik}=\frac{\partial x^{l}}{\partial x^{\prime i}}\frac{\partial x^{l}}{\partial x^{\prime k}}
$$
where the primed coordinates refer to a different coordinate system we're transforming to.
 
Physics news on Phys.org
I intepret it by applying formula
A^i=g^{ij}A_j
for ##A^i=dx^i##
dx^i=g^{ij}dx_j
\frac{\partial x^i}{\partial x_k}=g^{ik}
where partial derivatives are taken in condition that all the ohter components ##x_j## than ##x_k## do not change.
 
Last edited:
SplinterCell said:
Let ##\varphi## be some scalar field. In "The Classical Theory of Fields" by Landau it is claimed that
$$
\frac{\partial\varphi}{\partial x_i} = g^{ik} \frac{\partial \varphi}{\partial x^k}
$$
I wanted to prove this identity. Using the chain rule
$$
\frac{\partial}{\partial x_{i}}=\frac{\partial x^{k}}{\partial x_{i}}\frac{\partial}{\partial x^{k}}
$$
Differentiating ##x^{k}=g^{ik}x_{i}## with respect to ##x_i## yields
$$
\frac{\partial x^{k}}{\partial x_{i}}=g^{ik} \tag{*}
$$
which seems to prove the identity (?). However I'm not sure about the validity of the last step, especially because ##(*)## isn't mentioned in the relevant literature (either because it's too trivial or/and not useful or because it's wrong). I've only seen the metric tensor expressed as
$$
g_{ik}=\frac{\partial x^{l}}{\partial x^{\prime i}}\frac{\partial x^{l}}{\partial x^{\prime k}}
$$
where the primed coordinates refer to a different coordinate system we're transforming to.
There are a couple of conceptual issues here. First, the ##x^i## are the coordinates. They are not the components of a vector. Something like ##x^{k}=g^{ik}x_{i}## doesn't make sense.

We can, however, identify the "differentials" ##dx^i## as a set of basis one-forms; and ##dx_i## as a set of basis vectors. This is quite tricky to do formally, I recall.

The second issue, therefore, is what is meant by ##\frac{\partial}{\partial x_i}##? As we have already noted that ##x_i## are not coordinates.

To resolve this we first note that the gradient of a scalar is a covector: $$\frac{\partial \varphi}{\partial x^i} = A_i$$This can be proved by considering the gradient under a coordinate transformation. There must, therefore, be a corresponding vector with components: $$A^i = g^{ij}A_j = g^{ij}\frac{\partial \varphi}{\partial x^j}$$We can identify ##A^i## with ##\frac{\partial \varphi}{\partial x_i}## in some sense. And, again, formalising this rigorously in terms of vectors and one-forms is quite tricky.

In short, you can't prove it simply using the chain rule because the ##x_i## need to be defined first - and that takes you into more advanced differential geometry. The simplest approach, I suggest, is to take the following as a definition of the differential operator ##\frac{\partial}{\partial x_i}##: $$\frac{\partial}{\partial x_i} \equiv \partial^i \equiv g^{ij}\partial_j \equiv g^{ij}\frac{\partial}{\partial x^j}$$
 
PeroK said:
There are a couple of conceptual issues here. First, the ##x^i## are the coordinates. They are not the components of a vector. Something like ##x^{k}=g^{ik}x_{i}## doesn't make sense.
In "Classical Electrodynamics" by Jackson he writes (p. 542):
The covariant coordinate 4-vector ##x_{\alpha}## can be obtained from the contravariant ##x^{\beta}## by contraction with ##g_{\alpha\beta}##, that is,
$$
x_{\alpha} = g_{\alpha\beta} x^{\beta}
$$
and its inverse,
$$
x^{\alpha} = g^{\alpha\beta}x_{\beta}
$$
In other words, ##x^i## can be treated as components of a (contravariant) coordinate vector, can't they?

Landau & Lifshitz also define ##x^i## and ##x_i## this way. In particular, they write
$$
x^{i}=\left(ct,\mathbf{r}\right),\quad x_{i}=\left(ct,-\mathbf{r}\right),\quad x^{i}x_{i}=c^{2}t^{2}-\mathbf{r}^{2}
$$
(where they use the signature ##(+,-,-,-)## which is common in special relativity).
 
Last edited:
I do not have Jackson but assume that he says about SR where metric tensor components are constants and not functions of coordinates as they are in GR.
dx_i = g_{ik} dx^k
is integrated in SR as
\int dx_i = \int g_{ik} dx^k=g_{ik} \int dx^k
to be
x_i = g_{ik} x^k
 
SplinterCell said:
In "Classical Electrodynamics" by Jackson he writes (p. 542):

In other words, ##x^i## can be treated as components of a (contravariant) coordinate vector, can't they?
You have to be careful. In flat spacetime you have a position vector, whose components are often denoted by ##x^{\alpha}##. But, in curved spacetime, vectors are local objects, defined (in the tangent space) at each point in spacetime. There's no generalisation to the coordinates themselves being the components of a (position) vector.
 
SplinterCell said:
Landau & Lifshitz also define ##x^i## and ##x_i## this way. In particular, they write
$$
x^{i}=\left(ct,\mathbf{r}\right),\quad x_{i}=\left(ct,-\mathbf{r}\right),\quad x^{i}x_{i}=c^{2}t^{2}-\mathbf{r}^{2}
$$
(where they use the signature ##(+,-,-,-)## which is common in special relativity).
In your OP, are you assuming ##g^{ij} = \eta^{ij}##?
 
PeroK said:
In your OP, are you assuming ##g^{ij} = \eta^{ij}##?
Indeed, the context here is special relativity, i.e. flat spacetime with Minkowski metric.
PeroK said:
You have to be careful. In flat spacetime you have a position vector, whose components are often denoted by ##x^{\alpha}##. But, in curved spacetime, vectors are local objects, defined (in the tangent space) at each point in spacetime. There's no generalisation to the coordinates themselves being the components of a (position) vector.
Ok, didn't know that (haven't studied general relativity yet). So does this mean that ##x^{k}=g^{ik}x_{i}
## can make sense, but only if the spacetime is flat (like @anuttarasammyak showed)?
 
SplinterCell said:
Indeed, the context here is special relativity, i.e. flat spacetime with Minkowski metric.

Ok, didn't know that (haven't studied general relativity yet). So does this mean that ##x^{k}=g^{ik}x_{i}
## can make sense, but only if the spacetime is flat (like @anuttarasammyak showed)?
A position vector only makes sense in flat spacetime. That equation is only valid for the Minkowski metric - or, perhaps more generally, when ##g^{ij}## is independent of the coordinates.

You could try out that identity in the case of spherical coordinates (in flat spacetime) and see what you get.
 
Back
Top