Proving Path Independence: Evaluating the Integral on a Given Curve"

  • Thread starter Thread starter joemama69
  • Start date Start date
  • Tags Tags
    Path
joemama69
Messages
390
Reaction score
0

Homework Statement



show that F is path independant. Then evaluate the integral F dot dr on c, where c = r(t) = (t+sin(pi)t) i + (2t + cos(pi)t) j, 0<=t<=1

Homework Equations





The Attempt at a Solution



F = 4x^3y^2 + 2xy^3 i + 2x^4y - 3x^2y^2 + 4y^3 j

grad f = 12x^2y^2 + 2y^3 i + 2x^4 - 6x^2y + 12y^2 j not sure i need this

my instructor talked about numerouse way to determine path independace. which is the easiest
 
Physics news on Phys.org
You mean the line integral of F is path independent? All you have to do is show that the curl of F is zero. Then the result follows from Stoke's theorem.
 
ok so i found the curl of F
curl F = (8x^3y - 6xy^2 - 8x^3y + 6xy^2) = 0

but then the problem says to eval the integral F dot dr over the region c

when i dot them i got a extremely long expression. is this problem just a pain in the butt or did i make a boo boo
 
You've shown that the line integral is path independent, so you can choose a more convenient path to do the integration. What does the curve C look like? What are its endpoints?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top