Proving Polynomial Properties: Existence of nxn Matrix in Field k

  • Thread starter Thread starter DeadWolfe
  • Start date Start date
  • Tags Tags
    Stupid
DeadWolfe
Messages
456
Reaction score
1
How might one prove that for any degree n polynomial p(x) with coefficients lying in a field k, there exists any nxn matrix with entries in k with characteristic polynomial p?
 
Physics news on Phys.org
If you have a diagonal matrix with entries \lambda_1, \lambda_2, \cdots, \lambda_n then what is its characteristic polynomial?

[addition]It's not as easy as I thought. For example, the polynomial x^2 + 1 has real coefficients, two complex roots, and there is a matrix with real entries - namely [[0 1] [-1 0]] - of which it is the characteristic polynomial. So it's not as easy as just taking diag(first root, second root, ...) in the case where the roots can be outside the field (this has a name, I think it is "algebraically closed"?). Of course changing the basis does not change the characteristic polynomial and in my example that is the trick to get a real matrix but you'd have to prove that it is generally possible). But the proof is easy for algebraically closed fields (if that is indeed the name).
 
Last edited:
Yes, but of course I was interested in the general case (and particularly when k=reals)
 
Look into companion matrices.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top