Proving Sin 6x Cos 4x + Cos 4x sin 2x = Cos 2x tan 8x

  • Thread starter Thread starter texas_kiwi
  • Start date Start date
  • Tags Tags
    Cos Sin Tan
texas_kiwi
Messages
2
Reaction score
0
I am trying to prove this equation:

Sin 6x Cos 4x + Cos 4x sin 2x =
Cos 2x tan 8x
Tan 8x​
does anyone have any idea??
 
Physics news on Phys.org
\sin 6x\cos 4x = \frac{1}{2}(\sin 10x + \sin 2x)
\cos 4x\sin 2x = \frac{1}{2}(\sin 6x - \sin 2x).

So we get \frac{1}{2}(\sin 10x + \sin 6x)

or \sin 8x\cos 2x.

The second expression is not right. Just plug in some values.
 
Last edited:
yes I will tray to slove it

before some month I one like this and I see new law
tan(a)+tan(b)
tab(a)-tan(b)

I discoverd new law juist in my opinion
 
Back
Top