A Proving Subadditivity of Entropy for Uncorrelated Systems in Pure States

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Entropy
Click For Summary
The discussion focuses on proving the subadditivity of entropy for uncorrelated systems in pure states, specifically showing that the entropy of the combined system S(ρ_AB) equals the sum of the entropies of the individual systems S(ρ_A) and S(ρ_B). It begins with the definition of the combined density operator ρ_AB as the tensor product of the individual density operators ρ_A and ρ_B. The reduced density operators for systems A and B are derived using the trace operation. Participants suggest working in a basis where the density operator is diagonal to simplify the trace of the logarithm. The conversation emphasizes that using product states is sufficient for the proof without needing specific assumptions about the individual density operators.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Two systems A & B (with orthonormal basis ##\{|a\rangle\}## and ##\{|b\rangle\}##) are uncorrelated, so the combined density operator ##\rho_{AB} = \rho_A \otimes \rho_B##. Assume the combined system is in a pure state ##\rho_{AB} = |\psi \rangle \langle \psi |## where ##|\psi \rangle = \sum_{a,b} c_{ab} |a \rangle |b \rangle##. The reduced density operator for A is ##\rho_A = \mathrm{tr}_{H_{B}} (\rho_{AB}) = \sum_{a,a',b} c_{ab} \overline{c_{a'b}} |a \rangle \langle a'|##, and similarly for B. Now to show ##S(\rho_{AB}) = S(\rho_A) + S(\rho_B)##,
\begin{align*}
S(\rho_{AB}) &= -\mathrm{tr}_{H_A \otimes H_B} (\rho_{AB} \ln \rho_{AB}) \\
&= \sum_{a,b} \langle a| \langle b| (\rho_{AB} \ln \rho_{AB}) |a \rangle |b \rangle
\end{align*}How to proceed with the trace of the logarithm? Cheers.
 
Last edited:
Physics news on Phys.org
ergospherical said:
How to proceed with the trace of the logarithm?
Work in basis in which ##\rho## is diagonal! (There is also the Renyi entropy trick, but you don't need it here.)
 
  • Like
Likes ergospherical
You don't need any specific basis. Using the product states for taking the trace in the OP together with the product state ##\hat{\rho}_{AB}## is sufficient (you don't need to assume anything about the ##\hat{\rho}_A## and ##\hat{\rho}_B## either!).
 
  • Like
Likes ergospherical
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
812
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
10K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K