The problem: Let M be the set of all [tex]f\in L^1 \left( \left[ 0,1\right] \right) [/tex] relative to the Lebesgue measure, such that(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\int_{t=0}^{1}f(t)dt = 1[/tex].

Show that M is a closed convex subset of [tex]L^1 \left( \left[ 0,1\right] \right) [/tex] which contains infinitely many elements of minimal norm.

What I've got: Define the linear functional [tex]\Lambda f = \int_{t=0}^{1}f(t)dt[/tex]

Convexity is easy, for any f,g in M and s in (0,1) put [tex]h_s(t)=sf(t)+(1-s)h(t)[/tex] so that

[tex]\Lambda h_s = \Lambda \left( sf+(1-s)h\right) = s\Lambda f + (1-s)\Lambda g = s + (1-s) = 1\Rightarrow \int_{t=0}^{1}h_s(t)dt = 1\Rightarrow h_s\in M[/tex]

by which it is understood that M is convex.

That M is closed is my first trouble. Let [tex]\left\{ f_k\right\} \rightarrow f[/tex] be a sequence of vectors such that [tex]f_k\in M,\forall k\in\mathbb{N}[/tex]. Then we know that

[tex]\forall \epsilon >0, \exists N\in\mathbb{N}\mbox{ such that }k\geq N\Rightarrow \| f_k - f\| = \Lambda \left( |f_k - f|\right) < \epsilon[/tex]

How do I prove that [tex]f\in M[/tex] ? Can I show that [tex]\Lambda[/tex] is a bounded linear map (actually functional) from [tex]L^1 \left( \left[ 0,1\right] \right)[/tex] into [tex]\mathbb{C}[/tex]?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proving that a certian subset of L^1([0,1]) is closed

**Physics Forums | Science Articles, Homework Help, Discussion**