I'm aware of the standard proof.(adsbygoogle = window.adsbygoogle || []).push({});

What I'm wondering is why we can't just do the following. Given, I haven't slept well and I'm currently out of caffeine, so this one might be trivial for you guys.

Suppose, by way of contradiction, that ##\sqrt{p}=\frac{m}{n}##, for ##m,n\in\mathbb{Z}## coprime. Then, ##p=\frac{m^2}{n^2}##. Because ##p## is an integer, ##\frac{m^2}{n^2}## must be as well. However, because ##m## and ##n## are coprime, so are ##m^2## and ##n^2##. Thus, ##n^2=1## is necessary for ##\frac{m^2}{n^2}## to be an integer. But that means ##m^2=p##, and ##p## is prime. Thus, a contradiction is met and we see that ##\sqrt{p}## is irrational.

Is this valid? I'll probably figure out my mistake (if I made one) by the time I get back with adequate caffeination, but until then, I'd like to make sure I figure it out.

Thank you.

Edit: Gee, I guess it might be important to mention that ##p## is prime. :facepalm:

**Physics Forums - The Fusion of Science and Community**

# Proving that \sqrt{p} is irrational

Have something to add?

- Similar discussions for: Proving that \sqrt{p} is irrational

Loading...

**Physics Forums - The Fusion of Science and Community**