Proving that \sqrt{p} is irrational

612
23
I'm aware of the standard proof.

What I'm wondering is why we can't just do the following. Given, I haven't slept well and I'm currently out of caffeine, so this one might be trivial for you guys.

Suppose, by way of contradiction, that ##\sqrt{p}=\frac{m}{n}##, for ##m,n\in\mathbb{Z}## coprime. Then, ##p=\frac{m^2}{n^2}##. Because ##p## is an integer, ##\frac{m^2}{n^2}## must be as well. However, because ##m## and ##n## are coprime, so are ##m^2## and ##n^2##. Thus, ##n^2=1## is necessary for ##\frac{m^2}{n^2}## to be an integer. But that means ##m^2=p##, and ##p## is prime. Thus, a contradiction is met and we see that ##\sqrt{p}## is irrational.

Is this valid? I'll probably figure out my mistake (if I made one) by the time I get back with adequate caffeination, but until then, I'd like to make sure I figure it out.

Thank you.

Edit: Gee, I guess it might be important to mention that ##p## is prime. :facepalm:
 
Last edited:
341
50
In my opinion, it's valid.
 

jbunniii

Science Advisor
Homework Helper
Insights Author
Gold Member
3,386
179
It looks OK to me.
 

Curious3141

Homework Helper
2,830
86
Completely valid. The last step basically assumes that a prime cannot be a perfect square, which is true and fairly obvious. But if you really want to make the proof completely obvious, you can state: ##m^2 = p##. Hence ##m|p## (m divides p), which is a contradiction.
 

PeroK

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
9,402
3,432
Edit: Gee, I guess it might be important to mention that ##p## is prime. :facepalm:
Actually, it doesn't matter that p is prime. It's valid for any +ve integer: the square root is either an integer or irrational; it cannot be a proper rational.
 
612
23
Thank you, all.
 

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top