Proving the Banana Theorum with Permutations

  • Thread starter Thread starter Seda
  • Start date Start date
Seda
Messages
70
Reaction score
0

Homework Statement



According to my teacher, this is the Banana theorum, but I don't know if this is actually any concrete or just something he coined.

(I have to prove/derive this)

Let A be a set with n elements of k different types (such that elements of the same type are regarded as indistinguishable from one another for purposes of ordering.) Let ni. be the number of elements of type i for each integer form 1 to k. Then the number of different arrangements of the elements in A will be

n!/\Pi (ni!)


There is supposed to be the usual i=1 below the PI and a k above it.


Homework Equations



P(k,n) = n!/(n-k)!



The Attempt at a Solution




Well, this looks like a like a permutation to me, so i figure it can be derived the same way the equation above can be (I know how to derive that one.) However, since I am fairly green when it comes to the product notation of the denominater, I find myself a little confused on how exactly I can derive this one (and even what this equation is saying.)
 
Physics news on Phys.org
The big fat pi is the product analogue to the big fat sigma for sums. Suppose for example that k=3 and n1= 2, n2=3, n3=5. Then the denominator of the fraction would be (2!)(3!)(5!).
 
For your reference:

\frac{n!}{\prod_{i=0}^k n_i!}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top