MHB Proving the Dimension Bound for Intermediate Field Extensions

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $K$ be a finite extension of $F$ and let $L_1, L_2$ be intermediate extensions.
  1. Show that there is a basis of $L_1L_2$ over $L_1$ that consists of elements of $L_2$.
  2. Prove that $[L_1L_2:F]\leq [L_1:F]\cdot [L_2:F]$.
I have done the following:

  1. Let $[L_1:F]=n$, $[L_2:F]=m$.

    Let $a_1, a_2, \ldots , a_n$ be a basis for $L_1$ over $F$ and let $b_1, b_2, \ldots , b_m$ be a basis for $L_2$ over $F$.

    $L_1L_2$ is the smallest field that contains $L_1$ and $L_2$.

    So, we have that $$L_1L_2=F(a_1, a_2, \ldots , a_n, b_1, b_2, \ldots , b_m)=L_1(b_1, b_2, \ldots , b_m)$$

    Does this mean that $b_1, b_2, \ldots , b_m$ is a basis for $L_1L_2$ over $L_1$ that consists of elements of $L_2$ ? (Wondering)

    $ $
  2. We have that $F\subseteq L_1\subseteq L_1L_2$ so we get that $[L_1L_2:F]=[L_1L_2:L_1][L_1:F]$.

    We have that $[L_1L_2:L_1]=[L_1(b_1, b_2, \ldots , b_m):L_1]$. We have to show that this is smaller or equal to $[L_2:F]$, right?

    How could we show that? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $K$ be a finite extension of $F$ and let $L_1, L_2$ be intermediate extensions.
  1. Show that there is a basis of $L_1L_2$ over $L_1$ that consists of elements of $L_2$.
  2. Prove that $[L_1L_2:F]\leq [L_1:F]\cdot [L_2:F]$.
I have done the following:

  1. Let $[L_1:F]=n$, $[L_2:F]=m$.

    Let $a_1, a_2, \ldots , a_n$ be a basis for $L_1$ over $F$ and let $b_1, b_2, \ldots , b_m$ be a basis for $L_2$ over $F$.

    $L_1L_2$ is the smallest field that contains $L_1$ and $L_2$.

    So, we have that $$L_1L_2=F(a_1, a_2, \ldots , a_n, b_1, b_2, \ldots , b_m)=L_1(b_1, b_2, \ldots , b_m)$$

    Does this mean that $b_1, b_2, \ldots , b_m$ is a basis for $L_1L_2$ over $L_1$ that consists of elements of $L_2$ ? (Wondering)

    $ $
  2. We have that $F\subseteq L_1\subseteq L_1L_2$ so we get that $[L_1L_2:F]=[L_1L_2:L_1][L_1:F]$.

    We have that $[L_1L_2:L_1]=[L_1(b_1, b_2, \ldots , b_m):L_1]$. We have to show that this is smaller or equal to $[L_2:F]$, right?

    How could we show that? (Wondering)
Hi mathmari,

It is true that $L_1L_2=L_1(b_1,\dots,b_m)$, but the $b_i$ are not necessarily independent over $L1$; we only know that they are independent over $F$.

In a vector space, any spanning set contains a basis. By removing redundant elements, you can extract form the $b_i$ a basis of $L_1L_2$ over $L_1$. This shows that $[L_1L_2:L_1]\le m$, and the result follows.
 
castor28 said:
It is true that $L_1L_2=L_1(b_1,\dots,b_m)$, but the $b_i$ are not necessarily independent over $L1$; we only know that they are independent over $F$.

In a vector space, any spanning set contains a basis. By removing redundant elements, you can extract form the $b_i$ a basis of $L_1L_2$ over $L_1$.

Since $L_1L_2=L_1(b_1, b_2, \ldots , b_m)$ it follows that $L_2$ spans $L_1L_2$ as a vector space over $L_1$. From the Basis Reduction Theorem we get that we can remove some elements of $L_2$ to obtain a basis of $L_1L_2$ over $L_1$.

Have I understood that correctly? (Wondering)
castor28 said:
This shows that $[L_1L_2:L_1]\le m$, and the result follows.

We have that $[L_1L_2:L_1]$= dimension of $L_1L_2$ as a $L_1$-vector space = $\dim_{L_1}(L_1L_2)$ = number of elements of the basis of $L_1L_2$ over $L_1$.

Since the basis consists of some elements of $L_2$, we get that $[L_1L_2:L_1]\leq $ dimension of $L_2$. Is this correct?

Is this same as to say that $[L_1L_2:L_1]\leq $ dimension of $L_2$ as a $F$-vector space?

(Wondering)
 
Last edited by a moderator:
Hi mathmari

All that is correct. For the second part, we could be a little more precise and modify the second paragraph as:

Since the basis consists of some elements of the basis of $L_2$ over $F$, we get that $[L_1L_2:L_1]\leq$ dimension of $L_2$ over $F$.
 
castor28 said:
All that is correct. For the second part, we could be a little more precise and modify the second paragraph as:

Since the basis consists of some elements of the basis of $L_2$ over $F$, we get that $[L_1L_2:L_1]\leq$ dimension of $L_2$ over $F$.

Ah ok! Thank you so much! (Smile)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top