Proving the Double Sum of Exponentials Equals ae^a-e^a+1

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Sum
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\sum_{n=1}^\infty \sum_{m=1}^\infty\frac{a^{n+m}}{(n+m)!} = ae^a-e^a+1$$​
 
Physics news on Phys.org
$$ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a^{n+m}}{(n+m)!} = \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} \frac{a^{m+1}}{(m+1)!}$$

$$ = \sum_{m=1}^{\infty} \sum_{n=1}^{m} \frac{a^{m+1}}{(m+1)!} = \sum_{m=1}^{\infty} \frac{m a^{m+1}}{(m+1)!} = \sum_{m=2}^{\infty} \frac{(m-1) a^{m}}{m!}$$

$$ = \sum_{m=2}^{\infty} \frac{m a^{m}}{m!} - \sum_{m=2}^{\infty} \frac{a^{m}}{m!} = (ae^{a} - a) - (e^{a} - 1 - a) = ae^{a}-e^{a}+1$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K