MHB Proving the Double Sum of Exponentials Equals ae^a-e^a+1

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Sum
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\sum_{n=1}^\infty \sum_{m=1}^\infty\frac{a^{n+m}}{(n+m)!} = ae^a-e^a+1$$​
 
Mathematics news on Phys.org
$$ \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a^{n+m}}{(n+m)!} = \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} \frac{a^{m+1}}{(m+1)!}$$

$$ = \sum_{m=1}^{\infty} \sum_{n=1}^{m} \frac{a^{m+1}}{(m+1)!} = \sum_{m=1}^{\infty} \frac{m a^{m+1}}{(m+1)!} = \sum_{m=2}^{\infty} \frac{(m-1) a^{m}}{m!}$$

$$ = \sum_{m=2}^{\infty} \frac{m a^{m}}{m!} - \sum_{m=2}^{\infty} \frac{a^{m}}{m!} = (ae^{a} - a) - (e^{a} - 1 - a) = ae^{a}-e^{a}+1$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K